Skip to main content
Log in

Antitumor activity of targeted nanosome delivery systems based on poly(lactic-co-glycolic acid) nanoparticles, paclitaxel, and a recombinant alpha-fetoprotein fragment

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Biodegradable polymeric nanoparticles conjugated with targeting vector molecules have become prospective agents to improve the effectiveness of chemotherapeutic cancer treatment. This approach reduces the systemic toxicity of the drugs and increases the specificity of their uptake by cancer cells. A method has been developed to obtain complex nanoparticles loaded with the antitumor drug paclitaxel and a C-terminal fragment of recombinant oncofetal alpha-fetoprotein serving as a vector molecule, the in vitro cytotoxic activity of complex nanoparticles for MCF-7 human breast adenocarcinoma cells and resistant MDR1+ cells of the MCF-7Adr subline was shown to be higher than the cytotoxicity of the free drug and drug-loaded nanoparticles without the vector molecule. Moreover, the toxicity of complex paclitaxel-loaded nanoparticles against lymphocytes was low, which confirmed the selectivity of nanoparticle action. In summary, these results demonstrate that the strategy of active targeting of nanoparticles can efficiently enhance the antitumor activity of paclitaxel and it can solve the problem of reversing the multidrug resistance (MDR) of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. C. Farokhzad, J. Cheng, B. A. Teply, et al., PNAS 103, 6315 (2006).

    Article  CAS  Google Scholar 

  2. P. Kocbek, N. Obermajer, M. Cegnar, et al., J. Control. Release 120, 18 (2007).

    Article  CAS  Google Scholar 

  3. S. K. Sahoo, W. Ma, and V. Labhasetwar, Int. J. Cancer 112, 335 (2004).

    Article  CAS  Google Scholar 

  4. F. Esmaeili, M. H. Ghahremani, S. N. Ostad, et al., J. Drug. Target 16 (5), 415 (2008).

  5. F. Danhier, B. Vroman, N. Lecouturier, et al., 140, 166 (2009).

  6. C. Esteban, M. Geuskens, and J. Uriel, Int. J. Cancer 49(3), 425 (1991).

    Article  CAS  Google Scholar 

  7. R. Moro, J. Tcherkassova, E. Song, et al., IVD Technol. Mag. 11, (2005). http://www.ivdtechnology.com/arti-cle/new-broad-spectrum-cancer-marker

  8. M. B. Nitsvetov, E. Yu. Moskaleva, G. A. Posypanova, et al., Immunologiya 26, 122 (2005).

    Google Scholar 

  9. A. V. Godovannyi, M. V. Savvateeva, A. I. Sotnichenko, et al., Mol. Med., No. 1, 44 (2011).

  10. G. A. Posypanova, N. V. Gorokhovets, V. A. Makarov, et al., J. Drug. Target 16(4), 321 (2008).

    Article  CAS  Google Scholar 

  11. E. S. Severin and A. V. Rodina, Usp. Biol. Khim 46, 43 (2006).

    Google Scholar 

  12. J. K. Vasir and V. Labhasetwar, Adv. Drug. Deliv. Rev. B 59, 718 (2007).

    Article  CAS  Google Scholar 

  13. T. Mossman, J. Immunol. Meth. 65(1, 2), 55 (1983).

    Article  Google Scholar 

  14. Y. Jiang, X. Guo, and X. Tian, Carbohydrate Polym. 61, 399 (2005).

    Article  CAS  Google Scholar 

  15. S. K. Sahoo, J. Panyama, S. Prabhaa, et al., J. Control. Release 82, 105 (2002).

    Article  CAS  Google Scholar 

  16. N. P. Desai, C. Tao, A. Yang, et al., USA Patent No. 20046749868B1 (2004).

  17. M. B. Nitsvetov, A. V. Rodina, E. B. Moskaleva, et al., Vopr. Biol. Med. Farmats. Khim. 3, 19 (2001).

    Google Scholar 

  18. E. S. Severin, A. V. Karaulov, E. Yu. Moskaleva, et al., Mol. Med., No. 2, 57 (2003).

  19. N. Zhang, C. Chittapuso, C. Ampassavate, et al., Bioconjug. Chem. 19, 145 (2008).

    Article  CAS  Google Scholar 

  20. J. Changa, Y. Jallouli, M. Kroubi, et al., Int. J. Pharmaceut. 379, 285 (2009).

    Article  Google Scholar 

  21. S. K. Sahoo and V. Labhasetwar, Mol. Pharm. 2, 373 (2005).

    Article  CAS  Google Scholar 

  22. J. Panyam, W. Z. Zhou, S. Prabha, et al., Faseb. J. 16, 1217 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Godovannyi.

Additional information

Original Russian Text © A.V. Godovannyi, E.A. Vorontsov, N.V. Gukasova, N.V. Pozdnyakova, E.A. Vasilenko, N.G. Yabbarov, S.E. Severin, E.S. Severin, N.V. Gnuchev, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godovannyi, A.V., Vorontsov, E.A., Gukasova, N.V. et al. Antitumor activity of targeted nanosome delivery systems based on poly(lactic-co-glycolic acid) nanoparticles, paclitaxel, and a recombinant alpha-fetoprotein fragment. Nanotechnol Russia 7, 76–84 (2012). https://doi.org/10.1134/S1995078012010077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012010077

Keywords

Navigation