Skip to main content
Log in

Microwave sintering of nanostructured ceramic materials

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Experimental works devoted to studies of the sintering processes of ceramic and composite materials upon heating by microwave radiation have been reviewed. Since the above processes are presently considered to comprise one of the most promising methods of obtaining bulk articles with nanosized structure, special attention has been given to works in which the microwave heating application made it possible to obtain high-density materials while preserving an average grain size of about 100 nm. Also, a significant part of this review is related to studies of the microwave-field nonthermal effect on mass-transfer processes in a polycrystalline solid. The prospects of purposefully using the electromagnetic field effect to obtain nanostructured materials with predetermined properties have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Lyakishev, and M. I. Alymov, Ross. Nanotekhnol. 1(1–2), 71 (2006).

    Google Scholar 

  2. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  3. K. Lu, Int. Mater. Rev. 53, 21 (2008).

    Article  CAS  Google Scholar 

  4. Z. A. Munir, U. Anselmi-Tamburirni, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  CAS  Google Scholar 

  5. J. D. Katz, Ann. Rev. Mater. Sci. 22, 153 (1992).

    Article  CAS  Google Scholar 

  6. D. E. Clark and W. H. Sutton, Ann. Rev. Mater. Sci. 26, 299 (1996).

    Article  CAS  Google Scholar 

  7. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-Temperature Microwave Processing of Materials,” J. Phys. D: Appl. Phys. 34, 55 (2001).

    Article  Google Scholar 

  8. E. Pert, Y. Carmel, A. Birnboim, T. Olorunyolemi, D. Gershon, J. Calame, I. Lloid, and O. Wilson, J. Am. Cer. Soc. 84, 1981 (2001).

    Article  CAS  Google Scholar 

  9. J. Wang, J. G. P. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, and T. E. Cross, J. Am. Ceram. Soc. 89, 1977 (2006).

    Article  CAS  Google Scholar 

  10. A. Birnboim, D. Gershon, J. Calame, A. Birman, Y. Carmel, J. Rodgers, B. Levush, Yu. Bykov, A. Eremeev, V. Holoptsev, V. Semenov, D. Dadon, P. Martin, M. Rosen, and R. Hutcheon, J. Am. Ceram. Soc. 81, 1493 (1998).

    Article  CAS  Google Scholar 

  11. M. P. Harmer and R. J. Brook, J. Brit. Ceram. Soc. 80, 232 (1981).

    Google Scholar 

  12. J. A. Eastmen, K. E. Sickafus, J. D. Katz, S. G. Boeke, R. D. Blake, C. R. Evans, R. B. Schwarz, and Y. X. Liao, Mat. Res. Soc. Symp. Proc. 189, 273 (1991).

    Article  Google Scholar 

  13. Yu. Bykov, A. Eremeev, S. Egorov, V. Ivanov, Yu. Kotov, V. Khrustov, and A. Sorokin, Nanostruct. Mater. 12, 115 (1999).

    Article  Google Scholar 

  14. J. Freim, J. McKittrick, J. Katz, and K. Sickafus, Nanostruct. Mater. 4, 371 (1994).

    Article  CAS  Google Scholar 

  15. R. W. Siegel, Nanostruct. Mater. 4, 121 (1994).

    Article  Google Scholar 

  16. D. Tsai and Ch. Hsieh, J. Am. Ceram. Soc. 74, 830 (1991).

    Article  CAS  Google Scholar 

  17. H. Kao and W. Wei, J. Am. Ceram. Soc. 83, 362 (2000).

    Article  CAS  Google Scholar 

  18. S. Egorov, A. Eremeev, A. Sorokin, Yu. Bykov, A. Rachkovskii, and A. Poduretz, in Proceedings of the 10th APAM Topical Seminar and 3rd Conference Materials of Siberia on Nanoscience and Technology (Novosibirsk, 2003), p. 162.

  19. V. V. Ivanov, Y. A. Kotov, O. H. Samatov, R. Bohme, H. Karow, and G. Schumacher, Nanostruct. Mater. 6, 28 (1995).

    Article  Google Scholar 

  20. S. A. Nightingale, H. K. Worner, and D. P. Dunne, J. Am. Ceram. Soc. 80, 394 (1997).

    Article  CAS  Google Scholar 

  21. D. Lewis, R. J. Rayne, B. A. Bender, L. K. Kurihara, G.-M. Chow, A. Fliflet, A. Kincade, and R. Bruce, Nanostruct. Mater. 9, 97 (1997).

    Article  CAS  Google Scholar 

  22. N. McN. Alford, J. Breeze, X. Wang, S. J. Penn, S. Dalla, S. J. Webb, N. Ljepojevic, and X. Aupi, J. Eur. Ceram. Soc. 21, 2605 (2001).

    Article  CAS  Google Scholar 

  23. J. Breeze, J. M. Perkins, D. W. McComb, and N. McN. Alford, J. Am. Ceram. Soc. 92, 671 (2009).

    Article  CAS  Google Scholar 

  24. L.-W. Chen and X.-H. Wang, Nature 404, 168 (2000).

    Article  CAS  Google Scholar 

  25. J. Li and Y. Ye, J. Am. Ceram. Soc. 89, 139 (2006).

    Article  CAS  Google Scholar 

  26. X.-H. Wang, P.-L. Chen, and I.-W. Chen, J. Am. Ceram. Soc. 89, 431 (2006).

    Article  CAS  Google Scholar 

  27. M. Mazaheri, A. Simchi, and F. Golestani-Fard, J. Eur. Ceram. Soc. 28, 2933 (2008).

    Article  CAS  Google Scholar 

  28. J. Binner, R. Annapoorani, A. Paul, J. Santacruz, and B. Vaidhyanathan, J. Eur. Ceram. Soc. 28, 973 (2008).

    Article  CAS  Google Scholar 

  29. Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, G. Denisov, A. Bogdashev, G. Kalynova, V. Semenov, and N. Zharova, IEEE Trans. Plasma Sci. 32, 67 (2004).

    Article  Google Scholar 

  30. H. Kimura and Y. Yamazaki, in Proceedings of the IMPI 40th Annual Symposium (Boston, MA, 2006), p. 52.

  31. J. H. Booske and R. F. Cooper, in Advances in Microwave and Radio Frequency Processing, Ed. by M. Willert-Porada (Springer, Berlin, Heidelberg, 2003), p. 461.

    Google Scholar 

  32. Ya. E. Geguzin and N. N. Ovcharenko, Dokl. Akad. Nauk SSSR 163, 621–623 (1965).

    CAS  Google Scholar 

  33. J.-W. Jeong, J.-H. Han, and D.-Y. Kim, J. Am. Ceram. Soc. 83, 915 (2000).

    Article  CAS  Google Scholar 

  34. J.-I. Choi, J.-H. Han, and D.-Y. Kim, J. Am. Ceram. Soc. 86, 640 (2003).

    Article  CAS  Google Scholar 

  35. J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahn, J. Appl. Phys. 82, 2918 (1997).

    Article  CAS  Google Scholar 

  36. A. T. Rowley, R. Wroe, D. Vazquez-Navarro, W. Lo, and D. A. Cardwell, J. Mater. Sci. 32, 4541 (1997).

    Article  CAS  Google Scholar 

  37. D. A. Wilson, K.-Y. Lee, and E. D. Case, Mater. Res. Bull. 32, 1607 (1997).

    Article  CAS  Google Scholar 

  38. R. Wroe and A. T. Rowley, J. Mater. Sci. 31, 2019 (1996).

    Article  CAS  Google Scholar 

  39. M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, J. Mater. Sci. 32, 1347 (1997).

    Article  CAS  Google Scholar 

  40. J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahn, J. Appl. Phys. 82, 2918 (1997).

    Article  CAS  Google Scholar 

  41. N. I. Joomun, J. A. Kilner, J. Wang, B. Vaidhyanathan, and J. G. P. Binner, in Proceedings of the 9th International Conference on Microwave and High Frequency Heating (Loughborough, UK, 2003), p. 405.

  42. A. G. Whittaker, Chem. Mater. 17, 3426 (2005).

    Article  CAS  Google Scholar 

  43. V. A. Kashcheev and P. P. Poluéktov, Sov. Tech. Phys. Lett. 17, 577 (1991).

    Google Scholar 

  44. J. H. Booske, R. F. Cooper, and I. Dobson, J. Mater. Res. 7, 495 (1992).

    Article  CAS  Google Scholar 

  45. Yu. I. Bokhan, Sov. Tech. Phys. Lett. 18, 339 (1992).

    Google Scholar 

  46. M. R. Endicott, V. M. Kenkre, and M. Kus, Phys. Status Solidi B 184, 99 (1994).

    Article  CAS  Google Scholar 

  47. A. M. Kosevich, Sov. Phys. Solid State 7, 360 (1965).

    Google Scholar 

  48. K. I. Rybakov and V. E. Semenov, Phys. Rev. B 49, 6 (1994).

    Article  Google Scholar 

  49. K. I. Rybakov and V. E. Semenov, Phys. Rev. B 52, 3030 (1995).

    Article  CAS  Google Scholar 

  50. J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, Phys. Plasma 5, 1664 (1998).

    Article  CAS  Google Scholar 

  51. A. G. Litvak, in Problems of Plasma Theory, Ed. by M. A. Leontovich (énepgoatomizdat, Moscow, 1980), Vol. 10, p. 164 [in Russian].

    Google Scholar 

  52. K. I. Rybakov, V. E. Semenov, G. Link, and M. Thumm, J. Appl. Phys. 101, 084915 (2007).

    Article  Google Scholar 

  53. G. Link, M. Wolff, S. Takayama, G. Falk, R. Clasen, and M. Thumm, in Strong Microwaves in Plasmas, Proceedings of the 6th International Workshop, Ed. by A. G. Litvak (Inst. Applied Physics, Nizhny Novgorod, 2006), Vol. 2, p. 722.

    Google Scholar 

  54. J. Tabellion and R. Clasen, J. Mater. Sci. 39, 803 (2004).

    Article  CAS  Google Scholar 

  55. S. V. Egorov, A. G. Eremeev, K. I. Rybakov, V. E. Semenov, A. A. Sorokin, and S. A. Gusev, in Microwave and Radio Frequency Applications, Proceedings of the 3rd World Congress on Microwave and Radio Frequency Applications, Ed. by D. C. Folz, J. H. Booske, D. E. Clark, and J. F. Gerling (The American Ceramic Society, Westerville, 2004), p. 167.

    Google Scholar 

  56. Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, K. I. Rybakov, V. E. Semenov, A. A. Sorokin, and S. A. Gusev, J. Mater. Sci. 36, 131 (2001).

    Article  CAS  Google Scholar 

  57. M. Willert-Porada, in Microwaves: Theory and Application in Materials Processing IV, Vol. 80 of Ceramic Transactions, Ed. by D. E. Clark, W. H. Sutton, and D. A. Lewis (the American Ceramic Society, Westerville, 1997), p. 153.

    Google Scholar 

  58. F. F. Lange, J. Am. Ceram. Soc. 67, 83 (1984).

    Article  CAS  Google Scholar 

  59. G. R. Robb, A. Harrison, and A. G. Whittaker, Phys. Chem. Commun. 5, 135 (2002).

    Google Scholar 

  60. M. Jones, M. C. Valecillos, K. Hirao, M. E. Brito, and M. Toriyama, in Advances in Microwave and Radio Frequency Processing, Ed. by M. Willert-Porada (Springer, Berlin, Heidelberg, 2003), p. 562.

    Google Scholar 

  61. Y. M. Jung and S. W. Kim, Solid State Phenom. 135, 139 (2008).

    Article  CAS  Google Scholar 

  62. K. I. Rybakov, A. G. Eremeev, S. V. Egorov, Yu. V. Bykov, Z. Pajkic, and M. Willert-Porada, J. Phys. D: Appl. Phys. 41, 102 008 (2008).

    Article  Google Scholar 

  63. K. I. Rybakov, A. G. Eremeev, S. V. Egorov, Yu. V. Bykov, I. Otto, Z. Pajkic, and M. Willert-Porada, in Proceedings of the Global Congress on Microwave Energy Applications (Japan Society of Electromagnetic Wave Energy Applications, Tokyo, 2008), p. 241.

    Google Scholar 

  64. Yu. A. Kotov, J. Nanopart. Res. 5, 539 (2003).

    Article  Google Scholar 

  65. V. Ivanov, S. Paranin, and A. Nozdrin, Key Eng. Mater. 132–136, 400 (1997).

    Google Scholar 

  66. The Rietveld Method, Ed. by R. A. Young (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  67. S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, A. A. Sorokin, Yu. V. Bykov, V. N. Chuvil’deev, M. Yu. Gryaznov, and S. V. Shotin, Ross. Nanotekhnol. 3(5–6), 9 (2008).

    Google Scholar 

  68. Yu. V. Bykov, A. G. Eremeev, S. V. Egorov, I. V. Plotnikov, K. I. Rybakov, and V. V. Kholoptsev, Patent RF No. 2 352 540 (2009).

  69. A. Lakki, R. Schaller, C. Carry, and W. Benoit, J. Am. Ceram. Soc. 82, 2181 (1999).

    Article  CAS  Google Scholar 

  70. H. Frost and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, Oxford, 1982; Metallurgiya, Chelyabinsk, 1989).

    Google Scholar 

  71. S. Ghosh, A. H. Chokshi, P. Lee, and R. Raj, J. Am. Ceram. Soc. 92, 1856 (2009).

    Article  CAS  Google Scholar 

  72. D. Yang and H. Conrad, J. Am. Ceram. Soc. 93, 2935 (2009).

    Article  Google Scholar 

  73. D. Yang and H. Conrad, Scripta Mater. 63, 328 (2010).

    Article  CAS  Google Scholar 

  74. M. Cologna, B. Rashkova, and R. Raj, J. Am. Ceram. Soc. 93, 3556 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bykov.

Additional information

Original Russian Text © Yu.V. Bykov, K.I. Rybakov, V.E. Semenov, 2011, published in Rossiiskie Nanotekhnologii, 2011, Vol. 6, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, Y.V., Rybakov, K.I. & Semenov, V.E. Microwave sintering of nanostructured ceramic materials. Nanotechnol Russia 6, 647 (2011). https://doi.org/10.1134/S1995078011050053

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1995078011050053

Keywords

Navigation