Skip to main content
Log in

Interaction between gold nanoparticle plasmons and aggregates of polymethine dyes: “Invisible” nanoparticles

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Composite nanoparticles consisting of rodlike gold particles coated by an organic layer and polymethine (cyanine) dyes of J-aggregates of different structures absorbing light in red and infrared spectrum ranges have been synthesized. It has been demonstrated that, for dyes with J-band absorption maxima in the gold plasmon-band range, one observes an absorption dip as a result of the interference of the photoexcited states of nanoparticles and J-aggregates. The latter results in the decoloration of the gold colloid solution. The effect of the emergence of new intensive absorption bands of dye aggregates, which is assumed to be related to the perturbance of dye aggregate electron levels by gold plasmons and, consequently, lifting the ban on electron transitions to perturbed levels of aggregates, has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Roldugin, Usp. Khim. 69(10), 899 (2000).

    Google Scholar 

  2. B. G. Ershov, Ross. Khim. Zh. 45(3), 20 (2001).

    CAS  Google Scholar 

  3. Yu. A. Krutyakov, A. A. Kudrinskii, A. Yu. Olenin, and G. V. Lisichkin, Usp. Khim. 77(3), 242 (2008).

    Google Scholar 

  4. V. V. Klimov, Nanoplasmonics (FIZMATLIT, Moscow, 2010).

    Google Scholar 

  5. B. N. Khlebtsov, V. A. Khanadeev, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, Nanotechnol. Russ. 4(7–8), 91 (2009).

    Google Scholar 

  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V.M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature (London) 460, 1110 (2009).

    Article  CAS  Google Scholar 

  7. P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010).

    Article  CAS  Google Scholar 

  8. N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, Langmuir 17(3), 578 (2001).

    Article  CAS  Google Scholar 

  9. I. S. Lim, F. Goroleski, D. Mott, N. Kariuki, W. Ip, J. Luo, and C.-J. Zhong, J. Phys. Chem. B 110(13), 6673 (2006).

    Article  CAS  Google Scholar 

  10. V. S. Lebedev, A. G. Vitukhnovsky, A. Yoshida, N. Kometani, and Y. Yonezawa, Colloids Surf., A 326(3), 204 (2008).

    Article  CAS  Google Scholar 

  11. A. Yoshida, Y. Yonezawa, and N. Kometani, Langmuir 25(12), 6683 (2009).

    Article  CAS  Google Scholar 

  12. A. Yoshida and N. Kometani, J. Phys. Chem. C 114(7), 2867 (2010).

    Article  CAS  Google Scholar 

  13. W. Ni, H. Chen, J. Su, Z. Sun, J. Wang, and H. Wu, J. Am. Chem. Soc 132(13), 4806 (2010).

    Article  CAS  Google Scholar 

  14. J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, J. Am. Chem. Soc. 124(17), 4536 (2002).

    Article  CAS  Google Scholar 

  15. A. Yoshida, N. Uchida, and N. Kometani, Langmuir 25(19), 11802 (2009).

    Article  CAS  Google Scholar 

  16. V. M. Belous, V. I. Tolstobrov, and B. I. Shapiro, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 26(2), 140 (1981).

    CAS  Google Scholar 

  17. V. M. Belous, V. I. Tolstobrov, and B. I. Shapiro, Usp. Nauchn. Fotogr. 22, 125 (1984).

    CAS  Google Scholar 

  18. V. M. Belous, J. Appl. Spectrosc. 62(3), 435 (1995).

    Article  Google Scholar 

  19. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  CAS  Google Scholar 

  20. T. K. Sau and C. J. Murphy, Langmuir 20(15), 6414 (2004).

    Article  CAS  Google Scholar 

  21. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, J. Phys. Chem. B 109(29), 13857 (2005).

    Article  CAS  Google Scholar 

  22. B. Nikoobakht and M. A. El-Sayed, Chem. Mater. 15(10), 1957 (2003).

    Article  CAS  Google Scholar 

  23. K. Nishioka, Y. Niidome, and S. Yamada, Langmuir 23(20), 10353 (2007).

    Article  CAS  Google Scholar 

  24. B. I. Shapiro, A. N. Isaeva, and V. A. Tverskoi, Nanotechnol. Russ. 5(7–8), 35 (2010).

    Google Scholar 

  25. T. H. James, The Theory of the Photographic Process (Macmillan, New York, 1977; Khimiya, Leningrad, 1980).

    Google Scholar 

  26. J-Aggregates, Ed. by T. Kobayashi (World Scientific, Singapore, 1996).

    Google Scholar 

  27. B. I. Shapiro, Theoretical Principles of the Photographic Process (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Shapiro.

Additional information

Original Russian Text © B.I. Shapiro, E.S. Kol’tsova, A.G. Vitukhnovskii, D.A. Chubich, A.I. Tolmachev, Yu.L. Slominskii, 2011, published in Rossiiskie Nanotekhnologii, 2011, Vol. 6, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, B.I., Kol’tsova, E.S., Vitukhnovskii, A.G. et al. Interaction between gold nanoparticle plasmons and aggregates of polymethine dyes: “Invisible” nanoparticles. Nanotechnol Russia 6, 456 (2011). https://doi.org/10.1134/S1995078011040112

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1995078011040112

Keywords

Navigation