Skip to main content

Atomic force microscopy metrology of catalytic nanoparticles

Abstract

In this study, the problem of obtaining reliable information on the size distribution of nanoparticles on a rough surface or adhered nanoparticles by atomic force microscopy (AFM) is considered. A method to decrease the distorting effect of the above factors is proposed. The results of modeling demonstrate that the elaborated algorithm is functional. The results of processing the AFM images of Ni nanoparticles exhibiting catalytic activity during the electrooxidation of ethanol are presented. The effect of the convolution on the observable sizes and areas of nanopaticles is estimated.

This is a preview of subscription content, access via your institution.

References

  1. R. Wiesendanger and H.-J. Guntherodt, Scanning Tunneling Microscopy: II. Further Applications and Related Scanning Techniques (Springer, Berlin, 1993).

    Google Scholar 

  2. A. A. Bukharaev, N. I. Nurgazizov, A. A. Mozhanova, and D. V. Ovchinnikov, “AFM Investigation of Selective Etching Mechanism of Nanostructured Silica,” Surf. Sci. 482(5), 1319–1324 (2001).

    Article  ADS  Google Scholar 

  3. A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Atomic Force Microscopy for Metrology of Micro- and Nanostructures,” Mikroelektronika 26(3), 163–175 (1997) [Russ. Microelectron. 26 (3), 137–148 (1997)].

    Google Scholar 

  4. V. I. Bukhtiyarov, “Modern Trends in the Development of the Surface Science as Applied to Catalysis: The Elucidation of the Structure-Activity Relationships in Heterogeneous Catalysts,” Usp. Khim. 76(6), 596–627 (2007).

    Google Scholar 

  5. S. A. Ziganshina, A. P. Chuklanov, A. A. Bukharaev, L. G. Shaidarova, I. A. Chelnokova, A. V. Gedmina, and G. K. Budnikov, “Investigation of Multiphase Nanostructures with an Atomic-Force Microscope Operating in the Phase Contrast Mode,” Poverkhnost, No. 2, 18 (2006).

  6. L. G. Shaidarova, I. A. Chelnokova, A. V. Gedmina, G. K. Budnikov, S. A. Ziganshina, A. A. Mozhanova, and A. A. Bukharaev, “Electrooxidation of Oxalic Acid at a Carbon-Paste Electrode with Deposited Palladium Nanoparticles,” Zh. Anal. Khim. 61(4), 1277–1284 (2006) [J. Anal. Chem. 61 (4), 375–381 (2006)].

    Google Scholar 

  7. S. A. Ziganshina, A. A. Bukharaev, L. I. Shamsetdinova, A. P. Chuklanov, and D. A. Bizyaev, “Atomic Force Microscopy of Cobalt Nanoparticles with Electro-Catalytic Properties,” Poverkhnost, No. 9, 76–81 (2009) [J. Surf. Invest. 3 (4), 725–729 (2009)].

  8. D. Geng and G. Lu, “Size Effect of Gold Nanoparticles on the Electrocatalytic Oxidation of Carbon Monoxide in Alkaline Solution,” J. Nanopart. Res. 9, 1145–1151 (2007).

    Article  CAS  Google Scholar 

  9. D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach (Prentice Hall, Upper Saddle River, New York, 2002).

    Google Scholar 

  10. R. M. Haralick and L. G. Shapiro, “Image Segmentation Techniques,” Comput. Vision, Graphics, Image Process. 29(1), 130–132 (1985).

    Article  Google Scholar 

  11. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford, 1995).

    Google Scholar 

  12. D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture,” IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2003).

    Article  Google Scholar 

  13. N. R. Pal and S. K. Pal, “A Review on Image Segmentation Techniques,” Pattern Recognit. 26(9), 1277–1294 (1993).

    Article  Google Scholar 

  14. G. Borgefors, “Distance Transformations in Digital Images,” Comput. Vision, Graphics, Image Process. 34(3), 344–371 (1986).

    Article  Google Scholar 

  15. G. K. Budnikov, in Fundamentals of Modern Electrochemical Analysis, Ed. by G. K. Budnikov, V. N. Maistrenko, and M. R. Vyaselev (Binom, Moscow, 2003; Mir, Moscow, 2003).

    Google Scholar 

  16. V. Bykov, A. Golovanov, and V. Shevyakov, “Test Structure for SPM Tip Shape Deconvolution,” Appl. Phys. A 66, 499–502 (1998).

    Article  CAS  ADS  Google Scholar 

  17. A. A. Bukharaev, N. I. Nurgazizov, A. A. Mozhanova, and D. V. Ovchinnilov, “AFM Investigation of Selective Etching Mechanism of Nanostructured Silica,” Surf. Sci. 482–485, 1319–1324 (2001).

    Article  Google Scholar 

  18. A. P. Chuklanov, A. A. Bukharaev, and P. A. Borodin, “Tip-Shape Reconstruction for a Laterally Vibrating SPM Probe,” Mikroelektronika 34(5), 367–374 (2005) [Russ. Microelectron. 34 (5), 309–315 (2005)].

    Google Scholar 

  19. A. A. Bukharaev, D. V. Ovchinnikov, and A. A. Bukharaeva, “Diagnosis of the Surface by Scanning Force Microscopy (Review),” Zavod. Lab., No. 5, 10–27 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bukharaev.

Additional information

Original Russian Text © A.A. Bukharaev, S.A. Ziganshina, A.P. Chuklanov, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol. 5, Nos. 5–6.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bukharaev, A.A., Ziganshina, S.A. & Chuklanov, A.P. Atomic force microscopy metrology of catalytic nanoparticles. Nanotechnol Russia 5, 364–376 (2010). https://doi.org/10.1134/S1995078010050113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010050113

Keywords

  • Atomic Force Microscopy
  • Atomic Force Microscopy Image
  • Threshold Method
  • Highly Orient Pyrolytic Graphite
  • Atomic Force Microscopy Measurement