Skip to main content
Log in

Acoustic properties of metal oxides aqueous suspensions

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The feasibility of using aqueous suspensions of several metal oxide nanoparticles as contrast agents for ultrasonic cardiovascular visualization has been investigated. Nanopowders of Al, Fe, and Zr oxides were prepared by the electrical explosion of metallic wires, and characteristics such as particle size, specific area, and particle size distribution, were obtained, as were TEM photographs. Dynamic light-scattering data demonstrated that the aggregation of nanoparticles took place in their aqueous suspensions in the function of mean particle size. Acoustic properties of stable suspensions of nanopowders were studied in an experimental model of circulation with simultaneous measurements performed by a commercially available standard ultrasonic apparatus used in medical institutions. The results indicate that the intensity of the reflected echo signal depends on the chemical nature of the metal oxide and the structure of nanoparticles and aggregates that are formed in an aqueous medium. The presented data show the high ultrasonic echo activity of several metal oxides and, at the same time, form a scientific background for a better understanding of the interactions between nanoparticles and the ultrasonic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Dayton and K. W. Ferrara, “Targeted Imaging Using Ultrasound,” Magn. Reson. Imaging 16(4), 362–377 (2002).

    Article  Google Scholar 

  2. S. R. Cherry, “In Vivo Molecular and Genomic Imaging: New Challenges for Imaging Physics,” Phys. Med. Biol. 49(3), 13–48 (2004).

    Article  Google Scholar 

  3. M. J. K. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, and D. O. Cosgrove, “Microbubble Contrast Agents: A New Era in Ultrasound,” Br. Med. J. 322(7296), 1222–1225 (2001).

    Article  CAS  Google Scholar 

  4. S. Qin and K. W. Ferrara, “Acoustic Response of Compliable Microvessels Containing Ultrasound Contrast Agents,” Phys. Med. Biol. 51(20), 5065–5088 (2006).

    Article  PubMed  Google Scholar 

  5. B. A. Kaufmann and J. R. Lindner, “Molecular Imaging with Targeted Contrast Ultrasound,” Curr. Opin. Biotechnol. 18(1), 11–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. L. Zagorchev and M. J. Mulligan-Kehoea, “Molecular Imaging of Vessels in Mouse Models of Disease,” Eur. J. Radiol. 70(2), 305–311 (2009).

    Article  PubMed  Google Scholar 

  7. S. M. Demos, H. Önyüsel, J. Gilbert, S. I. Roth, B. Kane, P. Jungblut, J. V. Pinto, D. D. McPherson, and M. E. Klegerman, “In Vitro Targeting of Antibody-Conjugated Echogenic Liposomes for Site-Specific Ultrasonic Image Enhancement,” J. Pharm. Sci. 86(2), 167–171 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. G. M. Lanza and S. A. Wickline, “Targeted Ultrasonic Contrast Agents for Molecular Imaging and Therapy,” Curr. Probl. Cardiol. 28(12), 625–653 (2003).

    Article  PubMed  Google Scholar 

  9. S. Kwon and M. A. Wheatley, “Development and Characterization of PLA Nanodispersion as a Potential Ultrasound Contrast Agent for Cancer Site Imaging,” in Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, the Stevens Institute of Technology, Hoboken, NJ, United States, April 2–3, 2005 (Hoboken, 2005), pp. 144–145.

  10. C. Kollmann and M. Putzer, “Ultraschallkontrastmittel—physikalische Grundlagen (Ultrasound Contrast Agents—Physical Basics),” Radiologe 45(6), 503–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. V. Sboros, “Response of Contrast Agents to Ultra-sound,” Adv. Drug Delivery Rev. 60(10), 1117–1136 (2008).

    Article  CAS  Google Scholar 

  12. F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, “Ultrasound Contrast Agents: Basic Principles,” Eur. J. Radiol. 27(Suppl. 2), S157–S160 (1998).

    Article  PubMed  Google Scholar 

  13. J. Cwajg, F. Xie, E. O’Leary, D. Kricsfeld, H. Dittrich, and T. R. Porter, “Detection of Angiographically Significant Coronary Artery Disease with Accelerated Intermittent Imaging after Intravenous Administration of Ultrasound Contrast Material,” Am. Heart J. 139(4), 675–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K.W. Ferrara, “Mechanisms of Contrast Agent Destruction,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control 48(1), 232–248 (2001).

    Article  CAS  Google Scholar 

  15. D. Vancraeynest, X. Havaux, A. Pasquet, B. Gerber, C. Beauloye, P. Rafter, L. Bertrand, and J.-L. Vanoverschelde, “Myocardial Injury Induced by Ultrasound-Targeted Microbubble Destruction: Evidence for the Contribution of Myocardial Ischemia,” Ultrasound Med. Biol. 35(4), 672–679 (2009).

    Article  PubMed  Google Scholar 

  16. J. Ophir, A. Gobuty, R. E. McWhirt, and N. F. Maklad, “Ultrasonic Backscatter from Contrast Producing Collagen Microspheres,” Ultrason. Imaging 2(1), 67–77 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. K. J. Parker, T. A. Tuthill, R. M. Lerner, and M. R. Violante, “A Particulate Contrast Agent with Potential for Ultrasound Imaging of Liver,” Ultrasound Med. Biol. 13(9), 555–566 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Y-X. J. Wang, S. M. Hussain, and G. P. Krestin, “Superparamagnetic Iron Oxide Contrast Agents: Physicochemical Characteristics and Applications in MR Imaging,” Eur. J. Radiol. 11(11), 2319–2331 (2001).

    Article  CAS  Google Scholar 

  19. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical Application of Functionalized Magnetic Nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. J. Liu, A. L. Levine, J. S. Mattoon, M. Yamaguchi, R. J. Lee, X. Pan, and T. J. Rosol, “Nanoparticles as Image Enhancing Agents for Ultrasonography,” Phys. Med. Biol. 51(9), 2179–2189 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Yu. A. Kotov, “Electric Explosion of Wires as a Method for Preparation of Nanopowders,” J. Nanopart. Res. 5(5–6), 539–550 (2003).

    Article  Google Scholar 

  22. Yu. A. Kotov, A. V. Bagazeev, A. I. Medvedev, A. M. Murzakaev, T. M. Demina, and A. K. Shtol’ts, “Characteristics of Aluminum Oxide Nanopowders Prepared Using the Method of Electrical Explosion of Wires,” Ross. Nanotekhnol. 2(7–8), 109–115 (2007).

    Google Scholar 

  23. Yu. A. Kotov, “The Electrical Explosion of Wire: A Method for the Synthesis of Weakly Aggregated Nanopowders,” Ross. Nanotekhnol. 4(1–2), 40–51 (2009) [Nanotechnol. Russ. 4 (7–8), 415–424 (2009)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Shklyar.

Additional information

Original Russian Text © T.F. Shklyar, O.A. Toropova, A.P. Safronov, D.V. Leiman, Yu.A. Kotov, F.A. Blyakhman, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol. 5, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shklyar, T.F., Toropova, O.A., Safronov, A.P. et al. Acoustic properties of metal oxides aqueous suspensions. Nanotechnol Russia 5, 227–234 (2010). https://doi.org/10.1134/S1995078010030110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010030110

Keywords

Navigation