Skip to main content
Log in

Nanostructured marine biominerals as a promising prototype for the biomimetic simulation

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The physical, optical, and structural-chemica l properties of the spicules of glass sponges Hyalonema sieboldi, Pheronema raphanus, Pheronema sp. and their cross-correlation and changes during the modification of the phase state of the spicule material are investigated. It is experimentally shown that the spicules of a sponge are nanocomposite three-dimensional periodic structures which consist of the organic matrix and the amorphous silica; the most characteristic feature of the biomaterials is a different degree of silicon hydration over the cross-section of spicules. The material of spicules has the spectral-selective characteristics of the transmission in the region of 190–1500-nm wavelengths, which is determined by their three-dimensional periodic structure, organic matrix, and amorphous hydrated silica, as well as by the functional special features of spicules. The data obtained make it possible to consider the spicules of sea glass sponges as a promising prototype for biomimetic simulation to produce nanostructured optical materials for systems and devices of photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Khomutov, “Two-Dimensional Synthesis of Anisotropic Nanoparticles,” Colloids Surf., A 220, 243 (2002).

    Article  Google Scholar 

  2. A. M. Alekseev, V. A. Bykov, A. F. Popkov, N. I. Polush-kin, and V. I. Korneev, “Observation of Remanent States of Small Magnetic Particles: Micromagnetic Simulation and Experiment,” Pis’ma Zh. Eksp. Teor. Fiz. 75(6), 318 (2002) [JETP Lett. 75 (6), 268 (2002)].

    Google Scholar 

  3. J. Aizenberg, V. C. Sundar, A. D. Yablon, J. C. Weaver, and Gang Chen, “Biological Glass Fibers: Correlation between Optical and Structural Properties,” Proc. Natl. Acad. Sci. USA 101, 3358–3363 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. W. E. G. Müller, K. Wendt, Ch. Geppert, M. Wiens, A. Reiber, and H. C. Schröder, “Novel Photoreception System in Sponges?: Unique Transmission Properties of the Stalk Spicules from the Hexactinellid Hyalonema Sieboldi,” Biosens. Bioelectron. 21, 1149–1155 (2006).

    Article  PubMed  Google Scholar 

  5. Yu. N. Kul’chin, S. N. Bagaev, O. A. Bukin, S. S.Voznesenskii, A. L. Drozdov, Yu. A. Zinin, I. G. Nagornyi, E. V. Pestryakov, and V. I. Trunov, “Photonic Crystals Based on Natural Oceanic Biomin-erals,” Pis’ma Zh. Tekh. Fiz. 34(15), 1–7 (2008) [Tech. Phys. Lett. 34 (8), 633–635 (2008)].

    Google Scholar 

  6. M.-J. Uriz, X. Turon, M. A. Becerro, and G. Agell, “Siliceous Spicules and Skeleton Frameworks in Sponges: Origin, Diversity, Ultrastructural Patterns, and Biological Functions,” Microsc. Res. Tech. 62, 279–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V C. Sundar, D. E. Morse, and P. Fratzl, “Skeleton of Euplectella sp.: Structural Hierarchy from the Nanos-cale to the Macroscale,” Science (Washington) 309, 275–278 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. W. E. G. Müller, Xiaohong Wang, K. Kropf, H. Ush-ijima, W. Geurtsen, C. Eckert, M. N. Tahir, W. Tremel, A. Boreiko, U. Schlösmacher, J. Li, and H. C. Schröder, “Bioorganic/Inorganic Hybrid Composition of Sponge Spicules: Matrix of the Giant Spicules and the Comita-lia of the Deep Sea Hexactinellid Monorhaphis,” J. Struct. Biol. 161, 188–203 (2008).

    Article  PubMed  Google Scholar 

  9. Yu. N. Kul’chin, O. A. Bukin, S. S. Voznesenskii, A. N. Galkina, S. V. Gnedenkov, A. L. Drozdov, V. G. Kuryavyi, T. L. Mal’tseva, I. G. Nagornyi, S. L. Sinebryukhov, and A. I. Cherednichenko, “Optical Fibres Based on Natural Biological Minerals—Sea Sponge Spicules,” Kvantovaya Elektron. (Moscow) 38(1), 51–55 (2008) [Quantum Electron. 38 (1), 51–55 (2008)].

    Article  Google Scholar 

  10. Xiaohong Wang, Jin-He Li, Qiao Li, and H. C. Schre-der, “Structure and Characteristics of Giant Spicule of Deep Sea Hexactinellid Sponges of the Genus Monorhaphis,” Acta Zoologica Sinica (Dongwu Xue-bao) 53(3), 557–569 (2007).

    CAS  Google Scholar 

  11. J. C. Weaver, L. I. Pietrasanta, N. Hedin, B. F. Ach-melka, P. K. Hansma, and D. E. Morse, “Nanostruc-tural Features of Demosponge Biosilica,” J. Struct. Biol. 144, 271–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. H. Ehrlich, A. V. Ereskovskii, A. L. Drozdov, D. D. Krylova, T. Hanke, H. Meissner, S. Heinemann, and H. Worch, “A Modern Approach to Demineraliza-tion of Spicules in Glass Sponges (Porifera: Hexacti-nellida) for the Purpose of Extraction and Examination of the Protein Matrix,” Biol. Morya (Vladivostok) 32(3), 217–224 (2006) [Russ. J. Mar. Biol. 32 (3), 186–193 (2006)].

    Google Scholar 

  13. H. Ehrlich, S. Heinemann, Ch. Heinemann, P. Simon, V. V. Bazhenov, N. P. Shapkin, R. Born, K. R. Tabachnick, Th. Hanke, and H. Worch, “Nanostructural Organization of Naturally Occurring Composites— Part 1: Silica-Collagen-Based Biocomposites,” J. Nanomater. 2008, Article ID 623 838 (8 pages) (2008).

  14. H. Ehrlich, M. Krautter, Th. Hanke, P. Simon, Ch. Knieb, S. Heinemann, and H. Worch, “First Evidence of the Presence of Chitin in Skeletons of Marine Sponges: Part II. Glass Sponges (Hexactinellida: Porifera),” J. Exp. Zool., Part B 308, 473–483 (2007).

    Article  Google Scholar 

  15. P. Fratzl, “Biomimetic Materials Research: What Can We Really Learn from Nature’s Structural Materials?” J. R. Soc. Interface 4, 637–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. H.-C. Schröder, S. Perović-Ottstadt, M. Rothenberger, M. Wiens, H. Schwertner, R. Batel, M. Korzhev, I. M. Müller, and W. E. G. Müller, “Silica Transport in the Demosponge Suberites Domuncula: Fluorescence Emission Analysis Using the PDMPO Probe and Cloning of the Potential Transporter,” Biochem. J. 381, 665–673 (2004).

    Article  PubMed  Google Scholar 

  17. W. E. G. Müller, C. Eckert, K. Kropf, Xiaohong Wang, U. Schloßmacher, Ch. Seckert, S. E. Wolf, W. Tremel, and H. C. Schröder, “Formation of Giant Spicules in the Deep-Sea Hexactinellid Monorhaphis Chuni (Schulze 1904): Electron-Microscopic and Biochemical Studies,” Cell Tissue Res. 329, 363–378 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Galkina.

Additional information

Original Russian Text © S.S. Voznesenskii, A.N. Galkina, Yu.N. Kul’chin, A.A. Sergeev, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol.5, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voznesenskii, S.S., Galkina, A.N., Kul’chin, Y.N. et al. Nanostructured marine biominerals as a promising prototype for the biomimetic simulation. Nanotechnol Russia 5, 142–152 (2010). https://doi.org/10.1134/S1995078010010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010010155

Keywords

Navigation