Application of atomic-force microscopy technology to a structural analysis of the mitochondrial inner membrane

Abstract

For the first time, the surface of mitoplasts (mitochondria devoid of an outer membrane) was investigated by atomic-force microscopy (AFM). AFM has revealed folds on the surface of mitoplasts with thicknesses of 30–40 nm, which coincides with that of “dry cristae” in mitochondria measured with small-angle neutron scattering and electron microscopy. These results indicate the existence of a specific system maintaining the configuration of a mitoplast membrane similar to that of the inner membrane of intact mitochondria under their swelling in hypotonic conditions. The prospects of using AFM to study the configuration of the surface of the mitochondrial inner membrane and other biological membrane systems were demonstrated.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Gaczynska and P. A. Osmulski, “AFM of Biological Complexes: What Can We Learn?” Curr. Opin. Colloid Interface Sci. 13, 351–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    N. Severin, J. Barner, A. A. Kalachev, and J. P. Rabe, “Manipulation and Overstretching of Genes on Solid Substrates,” Nano Lett. 4, 577 (2004).

    Article  CAS  ADS  Google Scholar 

  3. 3.

    N. Crampton, W. A. Bonass, J. Kirkham, and N. H. Thomson, “Formation of Aminosilane-Functionalized Mica for Atomic Force Microscopy Imaging of DNA,” Langmuir 21, 7884–7891 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    S. Sen, S. Subramanian, and D. E. Discher, “Indentation and Adhesive Probing of a Cell Membrane with AFM: Theoretical Model and Experiments,” Biophys. J. 89, 3203–3213 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    D. J. Muller, “AFM: A Nanotool in Membrane Biology,” Biochemistry 47, 7986–7998 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    N. Matsko, D. Klinov, A. Manykin, V. Demin, and S. Klimenko, “Atomic Force Microscopy Analysis of Bacteriophages [PHI]KZ and T4,” J. Electron Microsc. 50, 417–422 (2001).

    Article  CAS  Google Scholar 

  7. 7.

    M. Yokokawa, K. Takeyasu, and S. H. Yoshimura, “Mechanical Properties of Plasma Membrane and Nuclear Envelope Measured by Scanning Probe Microscope,” J. Microsc. (Oxford, UK) 232, 82–90.

  8. 8.

    W. H. Roos and G. J. L. Wuite, “Nanoindentation Studies Reveal Material Properties of Viruses,” Adv. Mater. (Weinheim, Ger.) 21(10), 1187–1192 (2009).

    Article  CAS  Google Scholar 

  9. 9.

    T. G. Frey and C. A. Mannella, “The Internal Structure of Mitochondria,” Trends Biochem. Sci. 25, 319–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    I. Scheffler, Mitochondria (John Wiley and Sons, New York, 1999).

    Google Scholar 

  11. 11.

    A. P. Halestrap, “Mechanisms Involved in the Hormonal Regulation of Mitochondrial Function through Changes in the Matrix Volume,” Biochim. Biophys. Acta 1018, 278–281 (1990).

    Article  CAS  Google Scholar 

  12. 12.

    A. P. Halestrap, “The Regulation of the Matrix Volume of Mammalian Mitochondria In Vivo and In Vitro and Its Role in the Control of Mitochondrial Metabolism,” Biochim. Biophys. Acta 973, 355–382 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    L. S. Yaguzhinsky, V. I. Yurkov, and I. P. Krasinskaya, “On the Localized Coupling of Respiration and Phosphorylation in Mitochondria,” Biochim. Biophys. Acta 1757, 408–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    I. P. Krasinskaya, I. S. Litvinov, S. D. Zakharov, L. E. Bakeeva, and L. S. Yaguzhinsky, “Two Qualitatively Different Structural-Functional States of Mitochondria,” Biokhimiya (Moscow) 54, 1550–1556 (1989).

    CAS  Google Scholar 

  15. 15.

    I. P. Krasinskaya, V. N. Marshanskii, S. F. Dragunova, and L. S. Yaguzhinskii, “Synchronization of the Functions of Enzymes of the Respiratory Chain and Adenosine Triphosphate Synthetase of Energized Mitochondria,” Biokhimiya (Moscow) 49, 87–92 (1984).

    CAS  Google Scholar 

  16. 16.

    A. Olichon, L. Baricault, N. Gas, E. Guillou, A. Valette, P. Belenguer, and G. Lenaers, “Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome C Release and Apoptosis,” J. Biol. Chem. 278, 7743–7746 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    B. Amutha, D. M. Gordon, Y. Gu, and D. Pain, “A Novel Role of Mgm1p, a Dynamin-Related GTPase, in ATP Synthase Assembly and Cristae Formation/Maintenance,” Biochem. J. 381, 19–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    G. J. Praefcke and H. T. McMahon, “The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules?” Nat. Rev. Mol. Cell Biol. 5, 133–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    D. Johnson and H. Lardy, “Isolation of Liver and Kidney Mitochondria,” Methods Enzymol. 10, 94–96 (1967).

    Article  CAS  Google Scholar 

  20. 20.

    A. S. Filonov, D. Yu. Gavrilko, and I. V. Yaminsky, Scanning Probe Microscopy Image Processing Software User’s Manual “FemtoScan Online”, http://www.nanos-copy.net/manual/ru/index.html (Advanced Technologies Center, Moscow, 2006).

    Google Scholar 

  21. 21.

    T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, Yu. S. Kovalev, V. I. Yurkov, A. Nurenberg, A. Kh. Islamov, and L. S. Yaguzhinskii, “Detection of New Double-Membrane Structures in Native Mitochondria by the Method of Small-Angle Neutron Scattering,” Biofizika 51(6), 1001–1007 (2006) [Biophysics 51 (6), 882–886 (2006)].

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Dubrovin.

Additional information

Original Russian Text © E.V. Dubrovin, T.N. Murugova, K.A. Motovilov, L.S. Yaguzhinskii, I.V. Yaminsky, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 11–12.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dubrovin, E.V., Murugova, T.N., Motovilov, K.A. et al. Application of atomic-force microscopy technology to a structural analysis of the mitochondrial inner membrane. Nanotechnol Russia 4, 876–880 (2009). https://doi.org/10.1134/S1995078009110160

Download citation

Keywords

  • Osmotic Shock
  • Small Angle Neutron Scattering
  • Hypotonic Medium
  • Electron Microscopy Photo
  • Hypotonic Condition