Advertisement

Nanotechnologies in Russia

, Volume 4, Issue 11–12, pp 876–880 | Cite as

Application of atomic-force microscopy technology to a structural analysis of the mitochondrial inner membrane

  • E. V. DubrovinEmail author
  • T. N. Murugova
  • K. A. Motovilov
  • L. S. Yaguzhinskii
  • I. V. Yaminsky
Articles

Abstract

For the first time, the surface of mitoplasts (mitochondria devoid of an outer membrane) was investigated by atomic-force microscopy (AFM). AFM has revealed folds on the surface of mitoplasts with thicknesses of 30–40 nm, which coincides with that of “dry cristae” in mitochondria measured with small-angle neutron scattering and electron microscopy. These results indicate the existence of a specific system maintaining the configuration of a mitoplast membrane similar to that of the inner membrane of intact mitochondria under their swelling in hypotonic conditions. The prospects of using AFM to study the configuration of the surface of the mitochondrial inner membrane and other biological membrane systems were demonstrated.

Keywords

Osmotic Shock Small Angle Neutron Scattering Hypotonic Medium Electron Microscopy Photo Hypotonic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gaczynska and P. A. Osmulski, “AFM of Biological Complexes: What Can We Learn?” Curr. Opin. Colloid Interface Sci. 13, 351–367 (2008).CrossRefPubMedGoogle Scholar
  2. 2.
    N. Severin, J. Barner, A. A. Kalachev, and J. P. Rabe, “Manipulation and Overstretching of Genes on Solid Substrates,” Nano Lett. 4, 577 (2004).CrossRefADSGoogle Scholar
  3. 3.
    N. Crampton, W. A. Bonass, J. Kirkham, and N. H. Thomson, “Formation of Aminosilane-Functionalized Mica for Atomic Force Microscopy Imaging of DNA,” Langmuir 21, 7884–7891 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    S. Sen, S. Subramanian, and D. E. Discher, “Indentation and Adhesive Probing of a Cell Membrane with AFM: Theoretical Model and Experiments,” Biophys. J. 89, 3203–3213 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    D. J. Muller, “AFM: A Nanotool in Membrane Biology,” Biochemistry 47, 7986–7998 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    N. Matsko, D. Klinov, A. Manykin, V. Demin, and S. Klimenko, “Atomic Force Microscopy Analysis of Bacteriophages [PHI]KZ and T4,” J. Electron Microsc. 50, 417–422 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Yokokawa, K. Takeyasu, and S. H. Yoshimura, “Mechanical Properties of Plasma Membrane and Nuclear Envelope Measured by Scanning Probe Microscope,” J. Microsc. (Oxford, UK) 232, 82–90.Google Scholar
  8. 8.
    W. H. Roos and G. J. L. Wuite, “Nanoindentation Studies Reveal Material Properties of Viruses,” Adv. Mater. (Weinheim, Ger.) 21(10), 1187–1192 (2009).CrossRefGoogle Scholar
  9. 9.
    T. G. Frey and C. A. Mannella, “The Internal Structure of Mitochondria,” Trends Biochem. Sci. 25, 319–324 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    I. Scheffler, Mitochondria (John Wiley and Sons, New York, 1999).CrossRefGoogle Scholar
  11. 11.
    A. P. Halestrap, “Mechanisms Involved in the Hormonal Regulation of Mitochondrial Function through Changes in the Matrix Volume,” Biochim. Biophys. Acta 1018, 278–281 (1990).CrossRefGoogle Scholar
  12. 12.
    A. P. Halestrap, “The Regulation of the Matrix Volume of Mammalian Mitochondria In Vivo and In Vitro and Its Role in the Control of Mitochondrial Metabolism,” Biochim. Biophys. Acta 973, 355–382 (1989).CrossRefPubMedGoogle Scholar
  13. 13.
    L. S. Yaguzhinsky, V. I. Yurkov, and I. P. Krasinskaya, “On the Localized Coupling of Respiration and Phosphorylation in Mitochondria,” Biochim. Biophys. Acta 1757, 408–414 (2006).CrossRefPubMedGoogle Scholar
  14. 14.
    I. P. Krasinskaya, I. S. Litvinov, S. D. Zakharov, L. E. Bakeeva, and L. S. Yaguzhinsky, “Two Qualitatively Different Structural-Functional States of Mitochondria,” Biokhimiya (Moscow) 54, 1550–1556 (1989).Google Scholar
  15. 15.
    I. P. Krasinskaya, V. N. Marshanskii, S. F. Dragunova, and L. S. Yaguzhinskii, “Synchronization of the Functions of Enzymes of the Respiratory Chain and Adenosine Triphosphate Synthetase of Energized Mitochondria,” Biokhimiya (Moscow) 49, 87–92 (1984).Google Scholar
  16. 16.
    A. Olichon, L. Baricault, N. Gas, E. Guillou, A. Valette, P. Belenguer, and G. Lenaers, “Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome C Release and Apoptosis,” J. Biol. Chem. 278, 7743–7746 (2003).CrossRefPubMedGoogle Scholar
  17. 17.
    B. Amutha, D. M. Gordon, Y. Gu, and D. Pain, “A Novel Role of Mgm1p, a Dynamin-Related GTPase, in ATP Synthase Assembly and Cristae Formation/Maintenance,” Biochem. J. 381, 19–23 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    G. J. Praefcke and H. T. McMahon, “The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules?” Nat. Rev. Mol. Cell Biol. 5, 133–147 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    D. Johnson and H. Lardy, “Isolation of Liver and Kidney Mitochondria,” Methods Enzymol. 10, 94–96 (1967).CrossRefGoogle Scholar
  20. 20.
    A. S. Filonov, D. Yu. Gavrilko, and I. V. Yaminsky, Scanning Probe Microscopy Image Processing Software User’s Manual “FemtoScan Online”, http://www.nanos-copy.net/manual/ru/index.html (Advanced Technologies Center, Moscow, 2006).Google Scholar
  21. 21.
    T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, Yu. S. Kovalev, V. I. Yurkov, A. Nurenberg, A. Kh. Islamov, and L. S. Yaguzhinskii, “Detection of New Double-Membrane Structures in Native Mitochondria by the Method of Small-Angle Neutron Scattering,” Biofizika 51(6), 1001–1007 (2006) [Biophysics 51 (6), 882–886 (2006)].PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. V. Dubrovin
    • 1
    Email author
  • T. N. Murugova
    • 2
  • K. A. Motovilov
    • 3
    • 4
  • L. S. Yaguzhinskii
    • 4
  • I. V. Yaminsky
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Faculty of ChemistryMoscow State UniversityMoscowRussia
  4. 4.Belozersky Scientific-Research Institute of Physical and Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations