Skip to main content
Log in

Liposomes as nanocarriers of lipid-conjugated antitumor drugs melphalan and methotrexate

  • Experiment
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The inclusion of antitumor agents into nanodimensional carriers such as 100- to 150-nm liposomes makes it possible to reduce the general toxicity of chemotherapeutic drugs by decreasing the free drug concentration in the blood flow and by increasing the passive transport and accumulation of nanocarriers in tumors due to enhanced permeability of defective capillary vessel walls. On the other hand, biodegradable lipid-drug conjugates (lipophilic prodrugs) possess improved pharmacokinetics. In this study, we have determined detailed characteristics of the liposomal formulations of the antitumor drugs melphalan and methotrexate conjugated to rac-1,2-dioleoylglycerol, which contain the drugs in amounts (∼4 mM) sufficient for systemic injections into experimental animals. The liposomes were prepared from a mixture of natural phospholipids and prodrugs (phosphatidylcholine-phosphatidylinositol-prodrug molar ratio, 8 : 1 : 1) by the standard method of extrusion through polycarbonate membranes with 100-nm pores. The liposome size, lamellarity, and degree of aggregation were determined by methods of dynamic (laser) light scattering and transmission electron microscopy (using negative contrasting and freeze fracture techniques), while the liposome composition was checked using gel chromatography with subsequent UV spectrophotometry. It has been established that both diglyceride lipid-drug conjugates are completely included into unilamellar liposomes (bounded by a single lipid bilayer) with an average size of 50–150 nm and this dispersion can be stored for several days without any signs of significant aggregation. The possibility of obtaining liposomal preparations for long-term storage has been studied. It is demonstrated that liposomal drug dispersions can be subjected to deep freezing in liquid nitrogen and then stored for a long period of time at −70°C. For subsequent usage, the dispersion should be defrozen and treated for a short time in an ultrasonic bath, which completely restores the composition and size of the initial particles. Experiments in vitro have shown that a liposomal methotrexate conjugate is capable of overcoming tumor cell resistance to the drug, which is related to impaired transmembrane transport. The drug resistance of human leukemia cells related to a decreased activity of a transport protein (reduced folate carrier) has been decreased 114 times for methotrexate conjugate in liposomal formulation compared to the initial drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Couvreur and C. Vauthier, “Nanotechnology: Intelligent Design to Treat Complex Disease,” Pharm. Res. 23(7), 1417 (2006).

    Article  CAS  Google Scholar 

  2. D. D. Lasic and D. Papahadjopoulos, “Liposomes Revisited,” Science (Washington) 267(5202), 1275 (1995).

    Article  CAS  Google Scholar 

  3. F. Yuan, M. Dellian, D. F. Fukumura, et al., “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752 (1995).

    CAS  Google Scholar 

  4. R. M. Straubinger, R. D. Arnold, R. Zhou, et al., “Antivascular and Antitumor Activities of Liposome-Associated Drugs,” Anticancer Res. 24(2A), 397 (2004).

    CAS  Google Scholar 

  5. A. Gabizon, H. Schmeeda, and Y. Barenholz, “Pharmacokinetics of Pegylated Liposomal Doxorubicin: A Review of Animal and Human Studies,” Clin. Pharmacokinet. 42(5), 419 (2003).

    Article  CAS  Google Scholar 

  6. E. L. Vodovozova, P. Yu. Nikolskii, I. I. Mikhalev, and Yul. G. Molotkovsky, “Lipid Derivatives of Sarcolysine, Methotrexate, and Rubomycin,” Bioorg. Khim. 22(7), 548 (1996) [Russ. J. Bioorg. Chem. 22 (7), 468 (1996)].

    CAS  Google Scholar 

  7. E. L. Vodovozova, S. V. Khaidukov, G. P. Gaenko, et al., “The Transport of Cytotoxic Liposomes to Malignant Cells by Means of Carbohydrate Determinants,” Bioorg. Khim. 24(10), 760 (1998) [Russ. J. Bioorg. Chem. 24 (10), 676 (1998)].

    CAS  Google Scholar 

  8. P. Sapra and T. M. Allen, “Ligand-Targeted Liposomal Anticancer Drugs,” Prog. Lipid Res. 42(5), 439 (2003).

    Article  CAS  Google Scholar 

  9. A. Wong and I. Toth, “Lipid, Sugar, and Liposaccharide Based Delivery Systems,” Curr. Med. Chem. 8(9), 1123 (2001).

    CAS  Google Scholar 

  10. E. L. Vodovozova, D. V. Evdokimov, and Jul. G. Molotkovsky, “Synthesis of a Lipid Derivative of the Antitumor Drug Methotrexate,” Bioorg. Khim. 30(6), 663 (2004) [Russ. J. Bioorg. Chem. 30 (6), 599 (2004)].

    CAS  Google Scholar 

  11. E. L. Vodovozova, G. P. Gaenko, E. S. Bobrikova, et al., “A Diglyceride Derivative of Methotrexate: Synthesis and Cytotoxic Activity in Targeted Delivery Liposomes,” Khim.-Farm. Zh. 41(6), 10 (2007) [Pharm. Chem. J. 41 (6), 297 (2007)].

    Google Scholar 

  12. P. M. Loiseau, J. R. Deverre, L. el Kihel, et al., “Study of Lymphotropic Targeting and Macrofilaricidal Activity of a Melphalan Prodrug on the Molinema Dessetae Model,” J. Chemother. (Firenze, Italy) 6(4), 230 (1994).

    CAS  Google Scholar 

  13. A. D. Morris, G. Atassi, N. Guilbuad, and A. A. Cordi, “The Synthesis of Novel Melphalan Derivatives As Potential Antineoplastic Agents,” Eur. J. Med. Chem. 32(3), 343 (1997).

    Article  CAS  Google Scholar 

  14. A. M. Kozlov, E. Yu. Korchagina, E. L. Vodovozova, et al., “Increase in Sarcolysine Antitumor Activity by Transforming It into a Lipid Derivative and Incorporation into the Membrane of Liposomes Containing a Carbohydrate Vector,” Byull. Eksp. Biol. Med. 123(4), 439 (1997) [Bull. Exp. Biol. Med. 123 (4), 381 (1997)].

    Article  CAS  Google Scholar 

  15. E. L. Vodovozova, E. V. Moiseeva, G. K. Grechko, et al., “Antitumour Activity of Cytotoxic Liposomes Equipped with Selectin Ligand SiaLeX in a Mouse Mammary Adenocarcinoma Model,” Eur. J. Cancer 36(7), 942 (2000).

    Article  CAS  Google Scholar 

  16. J. J. McGuire, “Anticancer Antifolates: Current Status and Future Directions,” Curr. Pharm. Des. 9(31), 2593 (2003).

    Article  CAS  Google Scholar 

  17. S. Gurdag, J. Khandare, S. Stapels, et al., “Activity of Dendrimer-Methotrexate Conjugates on Methotrexate-Sensitive and-Resistant Cell Lines,” Bioconjugate Chem. 17(2), 275 (2006).

    Article  CAS  Google Scholar 

  18. L. S. Liang, W. Wong, and H. M. Burt, “Pharmacokinetic Study of Methotrexate Following Intra-Articular Injection of Methotrexate Loaded Poly(L-Lactic Acid) Microspheres in Rabbits,” J. Pharm. Sci. 94(6), 1204 (2005).

    Article  CAS  Google Scholar 

  19. Y. Chau, N. M. Dang, F. E. Tan, and R. Langer, “Investigation of Targeting Mechanism of New Dextran-Peptide-Methotrexate Conjugates Using Biodistribution Study in Matrix-Metalloproteinase-Overexpressing Tumor Xenograft Model,” J. Pharm. Sci. 95(3), 542 (2006).

    Article  CAS  Google Scholar 

  20. C. M. Ofner, K. Pica, B. J. Bowman, and C. S. Chen, “Growth Inhibition, Drug Load, and Degradation Studies of Gelatin/Methotrexate Conjugates,” Int. J. Pharm. 308(1–2), 90 (2006).

    Article  CAS  Google Scholar 

  21. C.-H. Pui, “Childhood Leukemias,” N. Engl. J. Med. 332(24), 1618 (1995).

    Article  CAS  Google Scholar 

  22. E. Bram, I. Ifergan, A. Shafran, et al., “Mutant Gly482 and Thr482 ABCG2 Mediate High-Level Resistance to Lipophilic Antifolates,” Cancer Chemother. Pharmacol. 58(6), 826 (2006).

    Article  CAS  Google Scholar 

  23. A. Rosowsky, R. A. Forsch, C.-S. Yu, et al., “Methotrexate Analogues: 21. Divergent Influence of Alkyl Chain Length on the Dihydrofolate Reductase Affinity and Cytotoxicity of Methotrexate Monoesters,” J. Med. Chem. 27(5), 605 (1984).

    Article  CAS  Google Scholar 

  24. R. Pignatello, G. Spampinato, V. Sorrenti, et al., Lipophilic Methotrexate Conjugates with Antitumor Activity,” Eur. J. Pharm. Sci. 10, 237 (2000).

    Article  CAS  Google Scholar 

  25. A. Williams, R. Goodfellow, N. Topley, et al., “The Suppression of Rat Collagen-Induced Arthritis and Inhibition of Macrophage Derived Mediator Release by Liposomal Methotrexate Formulations,” Inflammation Res. 49(4), 155 (2000).

    Article  CAS  Google Scholar 

  26. G. R. Bartlett, “Phosphorus Assay in Column Chromatography,” J. Biol. Chem. 234(3), 466 (1959).

    CAS  Google Scholar 

  27. V. I. Popov, S. S. Khutsyan, B. L. Allakhverdov, et al., “Analysis of the Supramolecular Organization of the Rat Olfactory Neuroepithelium by the Freezing-Etching Method with Circular Platinum-Carbon Evaporation,” Tsitologiya 32(11), 1088 (1990).

    Google Scholar 

  28. B. L. Allakhverdov and S. B. Kuzminykh, “Some Aspects of Developing Instruments for Cryomethods,” Acta Histochem., Suppl. 23, 75 (1981).

    CAS  Google Scholar 

  29. F. Olson, C. A. Hunt, F. C. Szoka, et al., “Preparation of Liposomes of Defined Size Distribution by Extrusion through Polycarbonate Membranes,” Biochim. Biophys. Acta 557(1), 9 (1979).

    Article  CAS  Google Scholar 

  30. M. J. Hope, M. B. Bally, L. D. Mayer, et al., “Generation of Multilamellar and Unilamellar Phospholipid Vesicles,” Chem. Phys. Lipids 40(2–4), 89 (1986).

    Article  Google Scholar 

  31. L. D. Bergelson, E. V. Dyatlovitskaya, T. I. Torkhovskaya, et al., “Phospholipid Composition of Membranes in the Tumor Cell,” Biochim. Biophys. Acta 210(2), 287 (1970).

    CAS  Google Scholar 

  32. A. Gabizon and D. Papahadjopoulos, “Liposome Formulations with Prolonged Circulation Time in Blood and Enhanced Uptake by Tumors,” Proc. Natl. Acad. Sci. USA 85(18), 6949 (1988).

    Article  CAS  Google Scholar 

  33. M. Muller, O. Zschornig, S. Ohki, and K. Arnold, “Fusion, Leakage, and Surface Hydrophobicity of Vesicles Containing Phosphoinositides: Influence of Steric and Electrostatic Effects,” J. Membr. Biol. 192(1), 33 (2003).

    Article  CAS  Google Scholar 

  34. T. D. Madden, M. B. Bally, M. J. Hope, et al., “Protection of Large Unilamellar Vesicles by Trehalose during Dehydration: Retention of Vesicle Contents,” Biochim. Biophys. Acta 817(1), 67 (1985).

    Article  CAS  Google Scholar 

  35. S. Ugwu, A. Zhang, M. Parmar, et al., “Preparation, Characterization, and Stability of Liposome-Based Formulations of Mitoxantrone,” Drug Dev. Ind. Pharm. 31(2), 223 (2005).

    Article  CAS  Google Scholar 

  36. D. A. Bezrukov, A. I. Koroleva, A. P. Kaplun, et al., “Optimization of the Method Used for Preparing Sterically Stabilized Thermally Sensitive Liposomes with Active Loading of Doxorubicin,” Ross. Bioter. Zh. 5(1), 79 (2006).

    Google Scholar 

  37. C. Mamot, D. C. Drummond, K. Hong, et al., “Liposome-Based Approaches to Overcome Anticancer Drug Resistance,” Drug Resist. Updates 6(2), 271 (2003).

    Article  CAS  Google Scholar 

  38. N. O. Funaki, J. Tanaka, M. Kohmoto, et al., “Membrane Fluidity Correlates with Liver Cancer Cell Proliferation and Infiltration Potential,” Oncol. Rep. 8(3), 527 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Vodovozova.

Additional information

Original Russian Text © E.L. Vodovozova, N.R. Kuznetsova, V.A. Kadykov, S.S. Khutsyan, G.P. Gaenko, Yu.G. Molotkovsky, 2008, published in Rossiiskie nanotekhnologii, 2008, Vol. 3, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodovozova, E.L., Kuznetsova, N.R., Kadykov, V.A. et al. Liposomes as nanocarriers of lipid-conjugated antitumor drugs melphalan and methotrexate. Nanotechnol Russia 3, 228–239 (2008). https://doi.org/10.1134/S1995078008030105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078008030105

Keywords

Navigation