Skip to main content
Log in

Software for numerical simulation of the generation and evolution of ultrashort light pulses in active and passive systems based on micro- and nanostructured optical fibers

  • Experiment
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

We present a software for a numerical simulation of the generation, propagation, and nonlinear-optical spectral and temporal evolution of ultrashort light pulses in laser systems and spectral-transformation devices based on micro- and nanostructured optical fibers. Functional modes and options offered by the developed software are explained. The LabVIEW interface allows a user to vary parameters of optical nonlinearity, gain, and loss, as well as to modify dispersion profiles of fiber components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. St. J. Russell, Science (Washington) 299, 358 (2003).

    Article  CAS  Google Scholar 

  2. J. C. Knight, Nature (London) 424, 847 (2003).

    Article  CAS  Google Scholar 

  3. A. M. Zheltikov, Optics of Microstructured Fibers (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  4. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).

    Article  Google Scholar 

  5. A. M. Zheltikov, Usp. Fiz. Nauk 177, 737 (2007) [Phys. Usp. 50, 705 (2007)].

    Article  Google Scholar 

  6. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).

    Article  CAS  Google Scholar 

  7. A. M. Zheltikov, Appl. Phys. B: Lasers Opt. 77(2–3), 143 (2003).

    Article  CAS  Google Scholar 

  8. A. M. Zheltikov, Usp. Fiz. Nauk 176, 623 (2006) [Phys. Usp. 49, 605 (2006)].

    Article  Google Scholar 

  9. W. H. Reeves, D. V. Skryabin, F. Biancalana, et al., Nature (London) 424, 511 (2003).

    Article  CAS  Google Scholar 

  10. D. G. Ouzounov, F. R. Ahmad, D. Müller, et al., Science (Washington) 301, 1702 (2003).

    Article  CAS  Google Scholar 

  11. A. M. Zheltikov, Usp. Fiz. Nauk 174, 73 (2004) [Phys. Usp. 47, 69 (2004)].

    Article  Google Scholar 

  12. D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science (Washington) 288, 635 (2000).

    Article  CAS  Google Scholar 

  13. R. Holzwarth, T. Udem, T. W. Hansch, et al., Phys. Rev. Lett. 85, 2264 (2000).

    Article  CAS  Google Scholar 

  14. S. A. Diddams, D. J. Jones, Jun. Ye, et al., Phys. Rev. Lett. 84, 5102 (2000).

    Article  CAS  Google Scholar 

  15. Th. Udem, R. Holzwarth, and T. W. Hansch, Nature (Washington) 416, 233 (2002).

    CAS  Google Scholar 

  16. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 056603 (2005).

  17. I. Hartl, X. D. Li, C. Chudoba, et al., Opt. Lett. 26, 608 (2001).

    Article  CAS  Google Scholar 

  18. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 057601 (2004).

  19. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Opt. Lett. 31, 3330 (2006).

    Article  CAS  Google Scholar 

  20. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Lett. 31, 2323 (2006).

    Article  CAS  Google Scholar 

  21. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, et al., Opt. Lett. 28, 1123 (2003).

    Article  Google Scholar 

  22. H. Kano and H. Hamaguchi, Opt. Express 13, 1322 (2005).

    Article  Google Scholar 

  23. E. R. Andresen, H. N. Paulsen, V. Birkedal, et al., J. Opt. Soc. Am. B 22, 1934 (2005).

    Article  CAS  Google Scholar 

  24. B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).

    Article  Google Scholar 

  25. J. Limpert, T. Schreiber, S. Nolte, et al., Opt. Express 11, 3332 (2003).

    Article  CAS  Google Scholar 

  26. C. J. S. de Matos, S. V. Popov, A. B. Rulkov, et al., Phys. Rev. Lett. 93, 103 901 (2004).

    Google Scholar 

  27. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).

    Article  CAS  Google Scholar 

  28. M. Szpulak, W. Urbanczyk, E. Serebryannikov, et al., Opt. Express 14, 5699 (2006).

    Article  Google Scholar 

  29. http://www.ni.com/labview

  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).

    Google Scholar 

  31. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).

    Article  CAS  Google Scholar 

  32. J. N. Kutz, B. C. Collins, K. Bergman, et al., J. Opt. Soc. Am. B 14, 2681 (1997).

    Article  CAS  Google Scholar 

  33. C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zheltikov.

Additional information

Original Russian Text © A.A. Voronin, A.M. Zheltikov, 2008, published in Rossiiskie nanotekhnologii, 2008, Vol. 3, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronin, A.A., Zheltikov, A.M. Software for numerical simulation of the generation and evolution of ultrashort light pulses in active and passive systems based on micro- and nanostructured optical fibers. Nanotechnol Russia 3, 214–220 (2008). https://doi.org/10.1134/S1995078008030087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078008030087

Keywords

Navigation