Skip to main content
Log in

Specific features of the formation of the silicon dioxide phase in porous poly(propylene) prepared through the crazing mechanism

  • Experiment
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A new technique is described for preparing poly(propylene)-silica nanocomposites with the use of crazing of polymers in reactive liquid media that exhibit an adsorption capacity with respect to the polymer and contain functional groups able to enter into different chemical reactions, in particular, hydrolytic condensation. The advantage of this technique over conventional mixing is that the components can be mutually dispersed at the nanolevel without using additional modifying additives. The hydrolytic condensation of tetraethoxysilane and hyperbranched poly(ethoxysiloxane) in the presence of acid or base catalysts with the formation of a silica gel in a crazed polymer matrix is investigated. It is established that the morphology of the prepared composites is determined by the structure of the crazed polymer matrix, the nature of the precursor, and the hydrolytic polycondensation conditions. Composites are prepared in which the silica phase is located either inside the poly(propylene) matrix (in the form of a continuous phase or discrete particles) or on the surface of the polymer. Porous silicon plates are produced through heat treatment of the poly(propylene)-silicate nanocomposites at a temperature of 700°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kontou and M. Niaounakis, Polymer 47(4), 1267 (2006).

    Article  CAS  Google Scholar 

  2. D. N. Bikiaris, A. Vassiliou, E. Pavlidou, and G. P. Karayannidis, Eur. Polym. J. 41(9), 1965 (2005).

    Article  CAS  Google Scholar 

  3. M. M. Ray and M. Okamoto, Prog. Polym. Sci. 28(11), 1539 (2003).

    Article  CAS  Google Scholar 

  4. E. M. Benetti, V. Causin, C. Marega, et al., Polymer 46(19), 8275 (2005).

    Article  CAS  Google Scholar 

  5. M. J. Percy, J. I. Amalvy, D. P. Randall, and S. P. Armes, Langmuir 20(6), 2184 (2004).

    Article  CAS  Google Scholar 

  6. S. Fujii, S. P. Armes, T. Araki, and H. Ade, J. Am. Chem. Soc. 127(48), 16 808 (2005).

  7. J. S. Bergmann, H. Chen, E. P. Giannelis, et al., Chem. Commun. (Cambridge, UK), No. 21, 2179 (1999).

  8. M. Alexandre, Ph. Dubois, T. Sun, et al., Polymer 43(8), 2123 (2002).

    Article  CAS  Google Scholar 

  9. M. C. Gonçalves and G. S. Attard, Rev. Adv. Mater. Sci. 4(2), 147 (2003).

    Google Scholar 

  10. J. P. Hanrahan, M. P. Copley, K. J. Ziegler, et al., Langmuir 21(9), 4163 (2005).

    Article  CAS  Google Scholar 

  11. I. M. Papisov, K. I. Bolyachevskaya, A. A. Litmanovich, et al., Eur. Polym. J. 35(11), 2087 (1999).

    Article  CAS  Google Scholar 

  12. N. F. Bakeev and A. L. Volynskii, Solvent Crazing of Polymers (Elsevier, Amsterdam, 1995).

    Google Scholar 

  13. A. L. Volynskii, O. V. Arzhakova, L. M. Yarysheva, and N. F. Bakeev, Vysokomol. Soedin., Ser. B 42(3), 549 (2000) [Polym. Sci., Ser. B 42 (3–4), 70 (2000)].

    CAS  Google Scholar 

  14. A. L. Volynskii, E. S. Trofimchuk, N. I. Nikonorova, and N. F. Bakeev, Zh. Obshch. Khim. 72(4), 575 (2002) [Russ. J. Gen. Chem. 72 (4), 536 (2002)].

    Google Scholar 

  15. V. V. Kazakova, V. D. Myakushev, T. V. Strelkova, and A. M. Muzafarov, Vysokomol. Soedin., Ser. A 41(3), 423 (1999) [Polym. Sci., Ser. A 41 (3), 283 (1999)].

    CAS  Google Scholar 

  16. V. V. Kazakova, E. A. Rebrov, V. B. Myakushev, et al., ACS Symp. Ser. 729 (Chap. 34), 503 (2000).

    Article  CAS  Google Scholar 

  17. E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, et al., Vysokomol. Soedin., Ser. A 49(10), 1801 (2007) [Polym. Sci., Ser. A 49 (10), 1107 (2007)].

    CAS  Google Scholar 

  18. R. Iler, Chemistry of Silica (Wiley, New York, 1979; Mir, Moscow, 1982), Vol. 2, pp. 706–708.

    Google Scholar 

  19. I. A. Karpov, E. N. Samarov, V. M. Masalov, et al., Fiz. Tverd. Tela (St Petersburg) 47(2), 334 (2005) [Phys. Solid State 47 (2), 347 (2005)].

    Google Scholar 

  20. K. A. Andrianov, Organosilicon Compounds (Goskhimizdat, Moscow, 1955), pp. 161–169 [in Russian].

    Google Scholar 

  21. W. M. Jones and D. B. Fischbach, J. Non-Cryst. Solids 101(1), 123 (1988).

    Article  CAS  Google Scholar 

  22. A Chemist’s Handbook (Khimiya, Moscow, 1964), Vol. 3, pp. 337, 344 [in Russian].

  23. A. L. Volynskii, L. I. Lopatina, and N. F. Bakeev, Vysokomol. Soedin., Ser. A 29(2), 398 (1986).

    Google Scholar 

  24. A. L. Volynskii, N. F. Bakeev, N. I. Nikonorova, et al., RF Patent No. 145418/04 (049593) (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Trofimchuk.

Additional information

Original Russian Text © E.S. Trofimchuk, N.I. Nikonorova, E.V. Semenova, E.A. Nesterova, A.M. Muzafarov, I.B. Meshkov, V.V. Kazakova, A.L. Volynskii, N.F. Bakeev, 2008, published in Rossiiskie nanotekhnologii, 2008, Vol. 3, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimchuk, E.S., Nikonorova, N.I., Semenova, E.V. et al. Specific features of the formation of the silicon dioxide phase in porous poly(propylene) prepared through the crazing mechanism. Nanotechnol Russia 3, 201–208 (2008). https://doi.org/10.1134/S1995078008030063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078008030063

Keywords

Navigation