Skip to main content
Log in

Theoretical Predictions of Structural, Electronic, and Optical Properties of α and β Phases of In2S3

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

We present the findings of our study, which employed the full-potential linearized augmented plane wave (FP-LAPW+lo) method, to investigate the structural, electronic, and optical characteristics of indium sulfide In2S3 in its cubic (α) and tetragonal (β) phases. Crystal structure optimizations were performed using the standard generalized gradient approximation and local density approximation for the exchange-correlation functional. The electronic structure and linear optical properties were evaluated using the modified Becke–Johnson (mBJ) potential. Our calculations closely match the experimental values for the structural parameters. The computed band gap reveals that In2S3 exhibits a direct band gap semiconductor behavior in the α phase, while in the β phase, it demonstrates an indirect band gap. These results are in excellent agreement with experimental observations. Additionally, we provide a comprehensive analysis of the calculated optical properties, including the dielectric function and refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. J. Koaib, I. Halidou, M. Kraini, et al., Ind. J. Phys. 97, 73 (2023). https://link.springer.com/article/10.1007/ s12648-021-02238-3

  2. F. Aousgi, Y. Trabelsi, A. Sbai, B. Khalfallah, and R. Chtourou, J. Chem. Eng. Mater. 10, 5 (2022).

    Google Scholar 

  3. M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, ACS Nano 4, 733 (2010). https://doi.org/10.1021/nn901180x

    Article  CAS  PubMed  Google Scholar 

  4. A. Timoumi, B. Tiss, W. Zayoud, et al., Mater. Sci. Semicond. 148, 106717 (2022). https://doi.org/10.1016/j.mssp.2022.106717

    Article  CAS  Google Scholar 

  5. A. M. A. Haleem, S. Mutsum, and I. Masaya, Mater. Sci. Appl. 3, 802 (2012).

    CAS  Google Scholar 

  6. M. A. Mughal, M. J. Newell, J. Vangilder, et al., J. Electrochemi. Soc. 162, 1638 (2015). https://doi.org/10.1149/2.0431507jes

    Article  CAS  Google Scholar 

  7. V. M. Kumbhar, V. M. Belekar, S. A. Jadhav, and P. S. Patil, Russ. J. Phys. Chem. B 17, 222 (2023). https://link.springer.com/article/10.1134/s19907-93123010232

  8. K. Otto, A. Katerski, O. Volobujeva, A. Mere, and M. Krunks, Energy Procedia 3, 63 (2011). https://doi.org/10.1016/j.egypro.2011.01.011

    Article  CAS  Google Scholar 

  9. S. Siering, A. Eicke, D. Hariskos, et al., Thin Solid Films 451, 562 (2004). https://doi.org/10.1016/j.egypro.2011.01.011

    Article  CAS  Google Scholar 

  10. S. Gall, N. Barreau, F. Jacob, S. Harel, J. Kessler, Thin Solid Films 515, 6076 (2007). https://doi.org/10.1016/j.tsf.2006.12.089

    Article  CAS  Google Scholar 

  11. N. Revathi, P. Prathap, R. W. Miles, K. T. R. Reddy, Sol. Energy Mater. Sol. Cells 94, 1487 (2010). https://doi.org/10.1016/j.solmat.2010.02.044

    Article  CAS  Google Scholar 

  12. R. Alaya, K. Kourchid, Y. Althaqafi, M. Mbarki, and A. Rebey, Russ. J. Phys. Chem. B 17, 868 (2023). https://link.springer.com/article/10.1134/S1990793123-040024

  13. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjstedt, and L. Nordstrӧm, Phys. Rev. B 64, 195134 (2001). https://doi.org/10.1103/PhysRevB.64.195134

    Article  CAS  Google Scholar 

  14. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005). https://doi.org/10.1063/1.2085170

    Article  CAS  PubMed  Google Scholar 

  15. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  PubMed  Google Scholar 

  16. A. D. Becke, E. R. Johnson, J. Chem. 124, 221101 (2006). https://doi.org/10.1063/1.2213970

    Article  CAS  Google Scholar 

  17. O. K. Anderson, Phys. Rev. B 12, 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060

    Article  Google Scholar 

  18. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  19. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  20. W. T. Kim, J. Appl. Phys. 60, 2631 (1986). https://doi.org/10.1063/1.337137

    Article  CAS  Google Scholar 

  21. N. Barreau, Sol. Energy 83, 363 (2009). https://doi.org/10.1016/j.solener.2008.08.008

    Article  CAS  Google Scholar 

  22. R. Diehl and R. Nitsche, J. Cryst. Growth, 20, 38 (1973). https://doi.org/10.1016/0022-0248(73)90034-1

    Article  CAS  Google Scholar 

  23. Y. Sharma and P. Srivastava, Mater. Chem. Phys. 135, 385 (2012). https://doi.org/10.1016/j.matchemphys.2012.04.064

    Article  CAS  Google Scholar 

  24. Z. Zhao, Y. Cao, J. Yi, et al., Chem. Phys. Chem. 13, 1551 (2012). https://doi.org/10.1002/cphc.201100968

    Article  CAS  PubMed  Google Scholar 

  25. T. Sall, A. Nafidi, B. M. Soucase, J. Semicond. 35, 063002 (2014). https://doi.org/10.1088/1674-4926/35/6/063002

  26. P. Pistor, J. M. M. Alvarez, M. Leon, et al., S. Lehmanne, Acta Cryst. B 72, 410 (2016). .https://doi.org/10.1107/S2052520616007058

    Article  CAS  Google Scholar 

  27. Y. X. Chen, K. Kitahara, and T. Takeuchi, J. Appl. Phys. 118, 245103 (2015). https://doi.org/10.1063/1.4939210

    Article  CAS  Google Scholar 

  28. K. Kambas, A. Anagnostopoulas, S. Ves, B. Ploss, and J. Spyridelies, Phys. Status Solidi B 127, 201 (1985). https://doi.org/10.1002/pssb.2221270119

    Article  CAS  Google Scholar 

  29. Z. Zhao, J. Yi, D. Zhou, Comput. Mater. Sci. 73, 139 (2013). https://doi.org/10.1016/j.commatsci.2013.02.027

    Article  CAS  Google Scholar 

  30. M. Kundakci, A. Ates, A. Astam, and M. Yildirim, Phys. E: Low-Dimens. Syst. Nanostructures 40, 600 (2008). https://doi.org/10.1016/j.physe.2007.08.145

    Article  CAS  Google Scholar 

  31. N. A. Allsop, A. Schönmann, A. Belaidi, et al., Thin Solid Films 513, 52 (2006). https://doi.org/10.1016/j.tsf.2006.01.019

    Article  CAS  Google Scholar 

  32. J. Sterner, J. Malmstrom, L. Stolt, Prog. Photovolt.: Res. Appl. 13, 179 (2005). https://doi.org/10.1002/pip.595

    Article  CAS  Google Scholar 

  33. C. D. Kim, H. Lim, H. L. Park, et al., Thin Solid Films 224, 69 (1993). https://doi.org/10.1016/0040-6090(93)90460-7

    Article  CAS  Google Scholar 

  34. Li-chia and Jhih-lin Shih, RSC Adv. 6, 12561 (2016). https://doi.org/10.1039/C5RA24370J

    Article  CAS  Google Scholar 

  35. D. R. Anfimov, Ig. S. Golyak, O. A. Nebritova I. L. Fufurin, Russ. J. Phys. Chem. B 16, 834 (2022). https://link.springer.com/article/10.1134/S1990793122050165

    Google Scholar 

  36. I. B. Vintaykin, I. S. Golyak, P. A. Korolev, et al., Russ. J. Phys. Chem. B 45, 413 (2021). https://link.springer.com/article/10.1134/S1990793121030131

  37. D. R. Penn, Phys. Rev. B 128, 2093 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  38. N. Bouguila, M. Karini, I. Halidou, et al., J. Electron. Mater. 45, 1 (2016). https://doi.org/10.1007/s11664015-3953-8

    Article  Google Scholar 

  39. S. Gorai and S. Chaudhuri, Mat. Chem. Phys. 89, 332 (2005). https://doi.org/10.1016/j.matchemphys.2004.09.009

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourchid, K., Alaya, R., Bouguila, N. et al. Theoretical Predictions of Structural, Electronic, and Optical Properties of α and β Phases of In2S3. Russ. J. Phys. Chem. B 18, 37–48 (2024). https://doi.org/10.1134/S1990793124010317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010317

Keywords:

Navigation