Skip to main content
Log in

Aerobic Decomposition of a Dimethylthiourea Nitrosyl Iron Complex in the Presence of Albimin and Glutathione

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Nitrosyl iron complexes (NICs) are natural depots of NO. NICs are formed by the interaction of endogenous nitric oxide (NO) and non‒heme [2Fe–2S] proteins. Their synthetic analogues are promising compounds in medicines for the treatment of socially significant diseases. In this paper, the effect of bovine serum albumin (BSA) and reduced glutathione (GSH) on the decomposition of a nitrosyl iron complex with N,N'-dimethylthiourea ligands [Fe(SC(NHCH3)2)2(NO)2]BF4 (complex 1) under aerobic conditions are studied. In the absorption spectra complex 1 in the presence of albumin a wide band appears at 370–410 nm, which indicates the coordination of the aerobic decay product of the complex in the hydrophobic pocket of the protein with Cys34 and His39. The quenching of albumin’s intrinsic fluorescence during titration with complex 1 is studied by fluorescence spectroscopy. The Stern–Volmer constant K = (2.3 ± 0.2) × 105 М–1 and the Förster radius 22.4 Å are calculated. The UV-spectrum of complex 1 in the presence of GSH has two peaks at 312 and 363 nm, characteristic of glutathione binuclear NICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. F. Vanin, Sorosov. Educ. J. 7, 7 (2001).

    Google Scholar 

  2. L. J. Ignarro, Circul. Res. 90, 21 (2002).

    Article  CAS  Google Scholar 

  3. K. Ghimire, H.M. Altmann, A.C. Straub, et al., Am. J. Physiol. Cell Physiol. 312, 254 (2017).

    Article  Google Scholar 

  4. T. S. Konstantinova, T. F. Shevchenko, I. V. Barskov, et al., Russ. J. Phys. Chem. 15, 119 (2021).

    Article  CAS  Google Scholar 

  5. P. Needleman and E. M. Johnson Jr., J. Pharm. Exp. Ther. 184, 709 (1973).

    CAS  Google Scholar 

  6. A. S. Shurshina, A. P. Galina, and E. I. Kulish, Russ. J. Phys. Chem. 16, 353 (2022).

    Article  CAS  Google Scholar 

  7. D. C. Pecto, l. S. Khan, R. B. Chupik, et al., Mol. Pharm. 16, 3178 (2019).

    Article  Google Scholar 

  8. B. L. Psikha, N. I. Neshev, and E. M. Sokolova, Russ. J. Phys. Chem. 15, 571 (2020).

    Article  Google Scholar 

  9. E. A. Saratovskich, N. A. Sanina, and V. M. Martinenko, Russ. J. Phys. Chem. 14, 138 (2020).

    Article  Google Scholar 

  10. E. I. Chazov, O. V. Rodnenkov, A. V. Zorin, et al., Nitr. Ox. 26, 148 (2012).

    Article  CAS  Google Scholar 

  11. N. A. Sanina, N. Y. Shmatko, D. V. Korchagin, et al., J. Coord. Chem. 69, 812 (2016).

    Article  CAS  Google Scholar 

  12. N. A. Sanina, S. M. Aldoshin, N. Y. Shmatko, et al., Inorg. Chem. Commun. 49, 44 (2014).

    Article  CAS  Google Scholar 

  13. N. P. Akentieva, N. A. Sanina, T. R. Prichodchenko, et al., Dokl. Biochem. Biophys. 486, 238 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. A. R. Gizatullin, N. P. Akentieva, N. A. Sanina, et al., Dokl. Biochem. Biophys. 483, 337 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. V. A. Mumyatova, G. I. Kozub, T. A. Kondrat’eva, et al., Russ. Chem. Bull. 68, 1025 (2019).

    Article  CAS  Google Scholar 

  16. N. Yu. Shmatko, D. V. Korchagin, G. V. Shilov, et al., Polyhedron 137, 72 (2017).

    Article  CAS  Google Scholar 

  17. N. P. Akent’eva, N. A. Sanina, T. R. Prihodchenko, et al., Dokl. Acad. Sci. 486, 742 (2019).

    Google Scholar 

  18. H. Lewandowska, M. Kalinowska, K. Brzóska, et al., Dalton Trans. 33, 8273 (2011).

    Article  Google Scholar 

  19. K. B. Shumaev, O. V. Kosmachevskaya, A. A. Timoshin, et al., Meth. Enzym. 436, 445 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. M. Otagiri and V. T. G. Chuang, Albumin in Medicine (Singapore, 2016).

    Book  Google Scholar 

  21. J. T. Peters, All About Albumin (Academic Press, 1995).

    Google Scholar 

  22. C. André and Y. C. Guillaume, Talanta 63, 503 (2004).

    Article  PubMed  Google Scholar 

  23. W. Bal, M. Sokołowska, E. Kurowska, et al., Biochim. Biophys. Acta 1830, 5444 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. S. U. Patel, P. J. Sadler, A. Tucker, J. Am. Chem. Soc. 115, 9285 (1993).

    Article  CAS  Google Scholar 

  25. B. J. Scott and A. R. Bradwell, Clin. Chem. 29, 629 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. M. Boese, P. I. Mordvintcev, A. F. Vanin, et al., Biol. Chem. 270, 29244 (1995).

    Article  CAS  Google Scholar 

  27. D. M. Townsend, K. D. Tew, and H. Tapiero, Biom. Pharm. 57, 145 (2003).

    Article  CAS  Google Scholar 

  28. E. V. Kalinina, N. N. Chernov, and M. D. Novichkov, Suc. Biol. Chem. 54, 299 (2014).

    Google Scholar 

  29. O. V. Pokidova, N. S. Emel’yanova, B. L. Psikha, et al., Inorg. Chim. Acta 502, 119369 (2020).

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 09. Revision D.01 (2013).

  31. A. Banerjee, S. Sen, and A. Paul, A Eur. J. 24, 3330 (2018).

  32. N. S. Emel’yanova, L. G. Gutsev, O. V. Pokidova, et al., Inorg. Chim. Acta 524, 120453 (2021).

    Article  Google Scholar 

  33. N. S. Emel’yanova, L. G. Gucev, E. A. Zagainova, et al., Russ. Chem. Bull. 9, 1 (2022).

    Google Scholar 

  34. A. F. Vanin, A. P. Poltorakov, V. D. Mikoyan, et al., Nitr. Ox. 23, 136 (2010).

    Article  CAS  Google Scholar 

  35. O. V. Pokidova, N. S. Emel’yanova, A. Yu. Kormukhina, et al., Dalton Trans. 51, 6473 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. O. V. Pokidova, N. S. Emel’yanova, B. L. Psikha, et al., J. Mol. Struct. 1192, 264 (2019).

    Article  CAS  Google Scholar 

  37. B. F. Peterman, K. J. Laidler, Arch. Biochem. Biophys. 199, 158 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. J. R. Lakowicz and R. Joseph, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

    Book  Google Scholar 

  39. T. Förster, Ann. Phys. 437, 55 (1948).

    Article  Google Scholar 

  40. Y. Chen and M. D. Barkley, Biochemistry 37, 9976 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. A. Mahammed, H. B. Gray, J. J. Weaver, et al., Bioconj. Chem. 15, 738 (2004).

    Article  CAS  Google Scholar 

  42. O. V. Pokidova, V. B. Luzhkov, N. S. Emel’yanova, et al., Dalton Trans. 49, 2674 (2020).

    Article  Google Scholar 

Download references

Funding

This study of the transformation of a complex in model biological systems was carried out with the help of a presidential grant (no. MK-1634.2021.1.3.), and the synthesis of the complex was carried out a state assignment, state theme no. FFSG-2024-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kormukhina.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article is part of the Materials of the X International Voevodsky Conference “Physics and Chemistry of Elementary Chemical Processes” (September 2022, Novosibirsk, Russia).

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kormukhina, A.Y., Kusyapkulova, A.B., Emel’yanova, N.S. et al. Aerobic Decomposition of a Dimethylthiourea Nitrosyl Iron Complex in the Presence of Albimin and Glutathione. Russ. J. Phys. Chem. B 18, 244–251 (2024). https://doi.org/10.1134/S1990793124010305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010305

Keywords:

Navigation