Skip to main content
Log in

Kinetics of Polaron Capture by Traps in a Lithium Niobate Crystal

  • ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The problem of a reversible transformation and trapping of small-radius polarons in a lithium niobate (LN) crystal is considered within the framework of the integral encounter theory, which is binary in the concentration of reactants. Analytical solutions are obtained for the relaxation kinetics of polarons, their lifetimes, and the rate constants of the corresponding channels of a multistage reaction controlled by polaron mobility. The temperature and concentration dependencies of the observed quantities are analyzed. It is shown that at low temperatures polarons accumulate in a bound state characterized by an anomalously low relaxation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. M. Imlau, H. Badorreck, and C. Merschjann, Appl. Phys. Rev. 2, 040606 (2015).

    Article  Google Scholar 

  2. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, New York, 2006), Vol. 113, pp. 342–411.

    Book  Google Scholar 

  3. M. Bazzan and C. Sada, Appl. Phys. Rev. 2, 040603 (2015).

    Article  Google Scholar 

  4. J. He, C. Franchini, and J. M. Rondinelli, Chem. Mater. 28, 25 (2016).

    Article  CAS  Google Scholar 

  5. W. A. Tisdale, K. J. Williams, and B. A. Timp, Science 328, 1543 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B Environ. 125, 331 (2012).

    Article  CAS  Google Scholar 

  7. A. Migani and L. Blancafort, J. Am. Chem. Soc. 138, 16165 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Y. Zhong, M. T. Trinh, R. Chen, et al., Nat. Commun. 6, 1 (2015).

    Google Scholar 

  9. L. Guilbert, L. Vittadello, M. Bazzan, et al., J. Phys. Condens. Matter 30, 125701 (2018).

    Article  PubMed  Google Scholar 

  10. L. Vittadello, M. Bazzan, S. Messerschmidt, et al., Crystals 8, 294 (2018).

    Article  Google Scholar 

  11. L. Vittadello, L. Guilbert, S. Fedorenko, and M. Bazzan, Crystals 11, 302 (2021).

    Article  CAS  Google Scholar 

  12. R. Marcus, J. Chem. Phys. 24, 966 (1956).

    Article  CAS  Google Scholar 

  13. T. Holstein, Ann. Phys. 8, 343 (1959).

    Article  CAS  Google Scholar 

  14. A. I. Burshtein, Adv. Chem. Phys. 129, 105 (2004).

    CAS  Google Scholar 

  15. R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics (Willey, New York, 1975).

    Google Scholar 

  16. A. A. Kipriyanov, O. V. Igoshin, and A. B. Doktorov, Physica A 268, 567 (1999).

    Article  CAS  Google Scholar 

  17. I. V. Gopich and A. Szabo, J. Chem. Phys. 117, 507 (2002).

    Article  CAS  Google Scholar 

  18. S. Lee and M. Karplus, J. Chem. Phys. 86, 1883 (1987).

    Article  CAS  Google Scholar 

  19. M. Yang, S. Lee, and K. J. Shin, J. Chem. Phys. 108, 9069 (1998).

    Article  CAS  Google Scholar 

  20. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

  21. N. F. Mott and E. A. Davis, Electron Process in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

  22. B. Movaghar and G. W. Sauer, J. Phys. C 13, 4933 (1980).

    Article  CAS  Google Scholar 

  23. V. V. Bryksin, Fiz. Tverd. Tela 22, 2441 (1980).

    Google Scholar 

  24. V. V. Bryksin, Fiz. Tverd. Tela 26, 1362 (1984).

    Google Scholar 

  25. C. R. Gochanour, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 70, 4254 (1979).

    Article  CAS  Google Scholar 

  26. S. G. Fedorenko, S. S. Khokhlova, and A. I. Burshtein, J. Phys. Chem. A 116, 3 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. S. G. Fedorenko and A. I. Burshtein, J. Chem. Phys. 141, 114504 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. S. G. Fedorenko and A. I. Burshtein, J. Phys. Chem. A 114, 4558 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. A. B. Doktorov and A. I. Burshtein, Sov. Phys. JETP 41, 671 (1976).

    Google Scholar 

  30. A. B. Doktorov, A. A. Kipriyanov, and A. I. Burshtein, Sov. Phys. JETP 47, 623 (1978).

    Google Scholar 

  31. A. I. Burshtein, A. B. Doktorov, A. A. Kipriyanov, et al., Sov. Phys. JETP 61, 516 (1985).

    Google Scholar 

  32. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Sums, Series and Derivatives (VEB Deutscher Verlag, Berlin, 1963).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Fedorenko.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

ADDITIONAL INFORMATION

This article is part of the Materials of the X International Voevodsky Conference “Physics and Chemistry of Elementary Chemical Processes” (September 2022, Novosibirsk, Russia).

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, S.G. Kinetics of Polaron Capture by Traps in a Lithium Niobate Crystal. Russ. J. Phys. Chem. B 18, 210–219 (2024). https://doi.org/10.1134/S1990793124010251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010251

Keywords:

Navigation