Skip to main content
Log in

Singlet Oxygen Generaion via Silver Nanoparticles UV-Photoexcitation

  • CHEMICAL PHYSICS OF NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The NIR-luminescence of silver nanoparticle suspension stabilized in distilled water has been investigated by photoexcitation of surface plasmon resonance (SPR). The observed short-living luminescence with the spectral maximum at 1300 nm is attributed to the singlet oxygen molecules luminescence. The singlet oxygen generation is assumed to pass in two stages as a result of three-photon process. First the one-photon SPR excitation of silver nanoparticle is occurred and leads to superoxide anion generation on the nanoparticle surface. Next the superoxide anion absorbs two more photons of the same laser pulse resulting in electron photodetachment with singlet oxygen formation. During a long period of UV-irradiation the studying suspension ceases to be photostable and sedimentation occurs. The sedimentation may be related to disturbance of nanoparticles steric stabilization resulting in more efficient superoxide anion adsorption on nanoparticles surface with silver oxide formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Y. J. Zhang, Plasmonics 6, 393 (2011).

    Article  Google Scholar 

  2. K. A. Willets and R. P. Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. R. Vankayala, C.-L. Kuo, A. Sagadevan, et al., J. Mater. Chem. B 1, 4379 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Y.-F. Huang, M. Zhang, J.-M. Zhao, et al., Angew. Chem. 126, 2385 (2014).

    Article  Google Scholar 

  5. W. Zhang, Y. Li, J. Niu, et al., Langmuir 29, 4647 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. S. Z. Rogovina, E. V. Prut, A. B. Solov’eva, et al., Russ. J. Phys. Chem. B 7 (4), 490 (2013).

    Article  Google Scholar 

  7. R. Vankayala, A. Sagadevan, P. Vijayaraghavan, et al., Angew. Chem. 123, 10828 (2011).

    Article  Google Scholar 

  8. K. B. Mogensen and K. Kneipp, J. Phys. Chem. C 118, 28075 (2014).

    Article  CAS  Google Scholar 

  9. B. I. Zapadinskii, A. V. Kotova, I. A. Matveeva, et al., Russ. J. Phys. Chem B 4 (5), 864 (2010).

    Article  Google Scholar 

  10. A. V. Demyanenko, A. S. Bogomolov, N. V. Dozmorov, et al., J. Phys. Chem. C 123, 2175 (2019).

    Article  CAS  Google Scholar 

  11. Y. Nosaka, T. Daimon, A. Y. Nosaka, et al., Phys. Chem. Chem. Phys. 6, 2917 (2004).

    Article  CAS  Google Scholar 

  12. G. Pasparakis, Small 9, 4130 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. V. G. Goldort, A. V. Demyanenko, A. S. Bogomolov, et al., Inst. Exp. Tech. 2, 252 (2019).

    Article  Google Scholar 

  14. A. P. Trushina, V. G. Goldort, S. A. Kochubei, et al., Chem. Phys. Lett. 485, 11 (2010).

    Article  CAS  Google Scholar 

  15. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, et al., Opti. Spectrosc. 118, 417 (2015).

    Article  CAS  Google Scholar 

  16. M. Bregnhøj, M. Westberg, F. Jensen, et al., Phys. Chem. Chem. Phys. 18, 22946 (2016).

    Article  PubMed  Google Scholar 

  17. K. Shiller and F. W. Muller, Polym. Int. 25, 19 (1991).

    Article  Google Scholar 

  18. A. Ryu, E. Naru, K. Arakane, et al., Chem. Pharm. Bull. 45, 1243 (1997).

    Article  CAS  Google Scholar 

  19. C. Pettenkofer, I. Pockrand, and A. Otto, Surf. Sci. 135, 52 (1983).

    Article  CAS  Google Scholar 

  20. S. M. Louie, J. M. Gorham, J. Tan, et al., Environ. Sci.: Nano 4, 1866 (2017).

    CAS  Google Scholar 

  21. J. Kowalonek and H. Kaczmarek, Eur. Polym. J. 46, 345 (2010).

    Article  CAS  Google Scholar 

  22. G. A. Rebrova, V. K. Vasilevskii, L. B. Rebrov, et al., Biomed. Khim. 53, 442 (2007).

    CAS  PubMed  Google Scholar 

  23. V. A. Burmistrov, N. E. Bogdanchikova, A. O. Gyusan, et al., Sib. Nauchn. Med. Zh. 41 (5), 4 (2021).

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 22-23-00921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Pyryaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article is part of the Materials of the X International Voevodsky Conference “Physics and Chemistry of Elementary Chemical Processes” (September 2022, Novosibirsk, Russia).

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, K.S., Valiulin, S.V. & Pyryaeva, A.P. Singlet Oxygen Generaion via Silver Nanoparticles UV-Photoexcitation. Russ. J. Phys. Chem. B 18, 289–295 (2024). https://doi.org/10.1134/S199079312401024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312401024X

Keywords:

Navigation