Skip to main content
Log in

Detection of the Photoreversibility of NO2-ONO Linkage Isomerization in [Co(NH3)5NO2]Cl(NO3) Crystals by the Photomechanical Response Method

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The linkage isomerization of NO2-ONO (nitro-nitrito) in the complex cation [Co(NH3)5NO2]2+ is a well-studied classical reaction. It is believed that the photoisomerization of the nitro form to the nitrito form in the crystalline phase reaches complete transformation at a low temperature, while the reverse transformation proceeds as a first-order thermal intramolecular reaction upon the heating of the crystals. To date, there is no information on the possibility of reverse photoisomerization. In this study, photoisomerization in [Co(NH3)5NO2]Cl(NO3) crystals is investigated by the analysis of the crystal deformation caused by the transformation under irradiation at different wavelengths. A change in the lattice parameters during the transformation leads to reliably measurable elongation and bending of acicular crystals. It is shown that the limiting elongation of the crystal under prolonged irradiation depends on the wavelength, which proves the reversibility of photoisomerization. The quantum yield of the reverse reaction is estimated to be 0.04 of the quantum yield of the direct reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. W. Gibbs and F. A. Genth, Researches on the Ammonia–Cobalt Bases (Smithsonian Institution, 1856).

    Google Scholar 

  2. S. M. Jörgensen, Z. Anorg. Chem. 5, 147–196 (1894).

    Google Scholar 

  3. G. B. Kauffman, Coord. Chem. Rev. 11, 161–188 (1973).

    Article  CAS  Google Scholar 

  4. E. V. Boldyreva, Mol. Cryst. Liq. Cryst. Sci. Technol. A 242, 17–52 (1994).

    Article  Google Scholar 

  5. E. V. Boldyreva, Russ. J. Coord. Chem. 27, 297–323 (2001).

    Article  CAS  Google Scholar 

  6. F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions: Study of Metal Complexes in Solution (John Wiley and Sons, Nashville, TN, 1967).

    Google Scholar 

  7. F. Scandola, C. Bartocci, and M. A. Scandola, J. Phys. Chem. 78, 572–575 (1974).

    Article  CAS  Google Scholar 

  8. V. Balzani, R. Ballardini, N. Sabbatini, and L. Moggi, Inorg. Chem. 7, 1398–1404 (1968).

    Article  CAS  Google Scholar 

  9. M. Kubota and S. Ohba, Acta Crystallogr., Sect. B 48, 627–632 (1992).

    Article  Google Scholar 

  10. A. M. Heyns and D. de Waal, Spectrochim. Acta Part A: Mol. Spectrosc. 45, 905–909 (1989).

    Article  Google Scholar 

  11. A. Eslami, Thermochim. Acta 409, 189–193 (2004).

    Article  CAS  Google Scholar 

  12. A. Eslami and N. Hasani, Thermochim. Acta 575, 114–121 (2014).

    Article  CAS  Google Scholar 

  13. S. Chizhik, A. Sidelnikov, B. Zakharov, P. Naumov, and E. Boldyreva, Chem. Sci. 9, 2319–2335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. B. Adell, Z. Anorg. Allg. Chem. 271, 49–64 (1952).

    Article  CAS  Google Scholar 

  15. E. V. Boldyreva, A. A. Sidelnikov, A. P. Chupakhin, N. Z. Lyakhov, and V. V. Boldyrev, Dokl. Akad. Nauk SSSR 277, 893–896 (1984).

    CAS  Google Scholar 

  16. E. V. Boldyreva and A. A. Sidelnikov, Izv. Sib. Otd. Akad. Nauk SSR, Ser. Khim. Nauk 5 (1987).

  17. E. V. Boldyreva, Solid State Ionics 101–103, 843–849 (1997).

    Article  Google Scholar 

  18. V. V. Boldyrev and E. Boldyreva, Reactivity of Molecular Solids (John Wiley and Sons, Chichester, UK, 1999).

    Google Scholar 

  19. T. Luty and C. J. Eckhardt, J. Am. Chem. Soc. 117, 2441–2452 (1995).

    Article  CAS  Google Scholar 

  20. A. A. Sidelnikov, S. A. Chizhik, B. A. Zakharov, A. P. Chupakhin, and E. V. Boldyreva, CrystEngComm 18, 7276–7283 (2016).

    Article  CAS  Google Scholar 

  21. I. Grenthe and E. Nordin, Inorg. Chem. 18, 1869–1874 (1979).

    Article  CAS  Google Scholar 

  22. I. Ciofini and C. Adamo, J. Phys. Chem. A 105, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  23. D. A. Johnson and K. A. Pashman, Inorg. Nucl. Chem. Lett. 11, 23–28 (1975).

    Article  CAS  Google Scholar 

  24. J. T. Muya, H. Chung, and S. U. Lee, RSC Adv. 8, 3328–3342 (2018).

  25. J. T. Muya, B. R. Meher, S. C. Sahoo, and H. Chung, Int. J. Quantum Chem. 119, e25929 (2019).

    Article  Google Scholar 

  26. W. G. Jackson, J. Chem. Educ. 68, 903 (1991).

    Article  CAS  Google Scholar 

  27. W. M. Phillips, S. Choi, and J. A. Larrabee, J. Chem. Educ. 67, 267 (1990).

    Article  CAS  Google Scholar 

  28. N. Masciocchi, A. Kolyshev, V. Dulepov, E. Boldyreva, and A. Sironi, Inorg. Chem. 33, 2579–2585 (1994).

    Article  CAS  Google Scholar 

  29. I. R. Beattie and D. P. N. Satchell, Trans. Faraday Soc. 52, 1590–1593 (1956).

    Article  CAS  Google Scholar 

  30. P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath, and E. Boldyreva, Chem. Rev. 115, 12440–12490 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. N. K. Nath, M. K. Panda, S. C. Sahoo, and P. Naumov, CrystEngComm 16, 1850–1858 (2014).

    Article  CAS  Google Scholar 

  32. P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda, and P. Naumov, Chem. Commun., (, 13941–13954 (2016).

  33. L. Zhu, F. Tong, R. O. Al-Kaysi, and C. J. Bardeen, in Photomechanical Materials, Composites, and Systems, Ed. by T. J. White (Wiley, 2017), pp. 233–274. https://doi.org/10.1002/9781119123279.ch7

    Book  Google Scholar 

  34. P. Naumov, D. P. Karothu, E. Ahmed, L. Catalano, P. Commins, J. Mahmoud Halabi, M. B. Al–Handawi, and L. Li, J. Am. Chem. Soc. 142, 13256–13272 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. J. Mahmoud Halabi, E. Ahmed, S. Sofela, and P. Naumov, Proceedings of the National Academy of Sciences 118, e2020604118 (2021).

    Article  Google Scholar 

  36. S. P. Gromov, A. K. Chibisov, and M. V. Alfimov, Russ. J. Phys. Chem. B 15, 219–227 (2021).

    Article  CAS  Google Scholar 

  37. D. Kitagawa, R. Tanaka, and S. Kobatake, Phys. Chem. Chem. Phys. 17, 27300–27305 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. A. Hirano, D. Kitagawa, and S. Kobatake, CrystEngComm 21, 2495–2501 (2019).

    Article  CAS  Google Scholar 

  39. D. Kitagawa and S. Kobatake, J. Phys. Chem. C 117, 20887–20892 (2013).

    Article  CAS  Google Scholar 

  40. T. Kim, L. Zhu, L. J. Mueller, and C. J. Bardeen, J. Am. Chem. Soc. 136, 6617–6625 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. E. Ahmed, S. Chizhik, A. Sidelnikov, E. Boldyreva, and P. Naumov, Inorg. Chem. 61, 3573–3585 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. T. G. Mayerhöfer, S. Pahlow, and J. Popp, ChemPhysChem 21, 2029–2046 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-23-01130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Chizhik.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article is part of the Materials of the X International Voevodsky Conference “Physics and Chemistry of Elementary Chemical Processes” (September 2022, Novosibirsk, Russia).

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhik, S.A., Gribov, P.A., Kovalskii, V.Y. et al. Detection of the Photoreversibility of NO2-ONO Linkage Isomerization in [Co(NH3)5NO2]Cl(NO3) Crystals by the Photomechanical Response Method. Russ. J. Phys. Chem. B 18, 153–165 (2024). https://doi.org/10.1134/S1990793124010226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010226

Keywords:

Navigation