Skip to main content
Log in

Study of the Preparation and Properties of Biomedical Ti–Mg Composites

  • ELEMENTARY PHYSICOCHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In biomedical Ti–Mg composites, Ti skeleton is conducive to the growth of new bone tissue, and the connected pore structure generated by the degradation of Mg can promote the transport and exchange of human body fluids. The combination of Ti and Mg can effectively reduce the elastic modulus of the composite and make it more suitable for human tissue. This paper attempts to prepare biomedical Ti–xMg (x = 8, 12, 16 and 20) composites by microwave sintering. In order to determine the optimal ratio of biomedical Ti–Mg composites, metallographic microscope, scanning electron microscope, X-ray diffractometer, electronic universal pressure testing machine and electrochemical workstation were used to study the effects of Mg content on the microstructure, mechanical properties and corrosion resistance of the composites. The results show that with the increase of Mg content, the pore defects of the composites decrease, the porosity decreases, the density increases, the compressive strength and elastic modulus decrease, and the corrosion resistance decreases. The compressive strength of Ti–16Mg is 385 MPa, the elastic modulus is 27.87 GPa, the self-corrosion potential is –1.14 V, the corrosion current density is 1.32 × 10–3A cm–2, and the polarization resistance is 295.83 Ohm cm2. Overall results highlighted the potential of biomedical Ti–16Mg composites for various possible orthopedic applications. And The combination of low elastic modulus, high compressive strength, improved corrosion resistance, and enhanced bioactivity makes biomedical Ti–16Mg composites fabricated by microwave sintering process potential and promising candidates for orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. M. Geetha, A. K. Singh, R. Asokamani, et al., Prog. Mater. Sci. 54 (3), 397 (2009).

    Article  CAS  Google Scholar 

  2. L. Kunčická, R. Kocich, and T. C. Lowe, Prog. Mater. Sci. 88, 232 (2017).

    Article  Google Scholar 

  3. X. Lin, S. Yang, K. Lai, et al., Nanomedicine 13 (1), 123 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. E. Zhang, X. Wang, M. Chen, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 69, 1210 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. L. Damiati, M. G. Eales, A. H. Nobbs, et al., Tissue Eng. 9, 1 (2018).

    CAS  Google Scholar 

  6. M. T. Jovanović, S. Tadić, S. Zec, et al., Mater. Des. 27 (3), 192 (2006).

    Article  Google Scholar 

  7. Y. J. Liu, S. J. Li, H. L. Wang, et al., Acta Mater. 113, 56 (2016).

    Article  CAS  Google Scholar 

  8. G. Q. You, F. J. Yao, Q. Li, et al., Rare Metal Mater. Eng. 51 (9), 3497 (2022).

    CAS  Google Scholar 

  9. J. L. Su, J. Teng, Z. L. Xu, et al., Int. J. Miner., Metall. Mater. 27 (6), 724 (2020).

    Article  CAS  Google Scholar 

  10. Y. Yin, Q. Huang, L. Liang, et al., J. Alloys Compd. 785, 38 (2019).

    Article  CAS  Google Scholar 

  11. L. Wu, F. Feyerabend, A. F. Schilling, et al., Acta Biomater. 27, 294 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. S. K. Dolukhanyan, A. G. Aleksanyan, O. P. Tergalstyan, et al., Russ. J. Phys. Chem. B 16, 76 (2022).

    Article  CAS  Google Scholar 

  13. N. A. Kochetov, Russ. J. Phys. Chem. B 16, 621 (2022).

    Article  CAS  Google Scholar 

  14. S. K. Dolukhanyan, A. G. Aleksanyan, G. N. Muradyan, et al., Russ. J. Phys. Chem. B 15, 740 (2021).

    Article  CAS  Google Scholar 

  15. V. M. Kumbhar, V. M. Belekar, S. A. Jadhav, et al., Russ. J. Phys. Chem. B 17, 222, (2023).

    Article  CAS  Google Scholar 

  16. O. V. Alekseeva, S. S. Kozlov, M. L. Konstantinova, et al., Russ. J. Phys. Chem. B 15, 183 (2021).

    Article  CAS  Google Scholar 

  17. Y. Chen, Z. Xu, C. Smith, et al., Acta Biomater. 10 (11), 4561 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. L. Y. Cui, K. Xue, S. Q. Li, et al., Chin. J. Nonferrous Met. 31 (11), 3071 (2021).

    Article  Google Scholar 

  19. S. H. Ouyang, Q. L. Huang, Y. Liu, et al., Bioact. Mater. 4 (6), 37 (2019).

    PubMed  Google Scholar 

  20. D. S. Zhan, J. Oral Mater. Instrum. 31 (3), 153 (2022).

    Google Scholar 

  21. Z. H. Gao, M. Z. Gao, Y. Sun, et al., Mat. Prog. China 41 (11), 959 (2022).

    Google Scholar 

  22. R. Ma, J. L. Wang, Y. W. Li, et al., J. Tissue Eng. Res. 24 (22), 3534 (2021).

    Google Scholar 

  23. P. Z. Xia, Y. Xu, S. T. Zhao, et al., Titanium Ind. Prog. 38 (3), 41 (2021).

    Google Scholar 

  24. Q. Wang, Study on the Preparation and Degradation Behavior of Biomedical Porous Ti–Mg Composites by Microwave Sintering (Nanchang Hangkong University, Nanchang, 2016).

  25. J. L. Zhang, Preparation of Medical Ti-Mg Composite by Microwave Sintering and Surface Modification by Micro-arc Oxidation (Nanchang Hangkong University, Nanchang, 2019).

    Google Scholar 

  26. S. Jiang, Design, Preparation and Characterization of Discontinuous Titanium–Magnesium Composites (Harbin Institute of Technology, Harbin, 2017).

    Google Scholar 

  27. G. F. Jiang, C. L. Wang, Q. Y. Li, et al., Mater. Sci. Eng. C 47 (47), 142 (2015).

    Article  CAS  Google Scholar 

  28. Q. Y. Li, G. F. Jiang, C. L. Wang, et al., Mater. Sci. Eng. C 57, 349 (2015).

    Article  CAS  Google Scholar 

  29. Z. Esen, B. Dikici, O. Duygulu, et al., Mater. Sci. Eng. A 573, 119 (2013).

    Article  CAS  Google Scholar 

  30. X. C. Cai, S. J. Ding, Z. J. Li, et al., Comp. Part B Eng. 215, 108743 (2021).

    Article  CAS  Google Scholar 

  31. G. K. Meenashisundaram, N. Y. Wang, S. Maskomani, et al., Mater. Sci. Eng. C 108 (2020).

  32. Y. Liu, K. Li, T. Luo, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 56, 241 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Y. Wang, J. L. Xie, Y. H. Chen, et al., Precis. Forming Eng. 14 (12), 119 (2022).

    Google Scholar 

  34. Y. P. Zhu, J. Y. Tan, J. H. Wang, et al., Acta Metall. Sin. 59 (2), 257 (2013).

    Google Scholar 

  35. Z. W. Yan, Preparation and Micromechanical Behavior of Ti Particle Reinforced Mg Matrix Composites (Yanshan University, Yanshan, 2022).

  36. Y. Q. Wang, J. Tao, J. L. Zhang, et al., Trans. Nonferrous Met. Soc. China 21 (5), 1074 (2011).

    Article  CAS  Google Scholar 

  37. Y. L. Liao, Sci. Technol. Innov. 26, 71 (2021).

    Google Scholar 

  38. N. N. Kang, W. G. Chen, R. Hou, et al., Powder Metall. Tech. 37 (1), 50 (2019).

    Google Scholar 

  39. X. B. Chen, Research on Microwave High-Throughput Preparation Technology of Multi-Component Alloy Material (University of Science and Technology, Beijing, 2022).

  40. M. Y. Xie, J. J. Shi, G. P. Chen, et al., Powder Metall. Ind. 29 (3), 66 (2019).

    CAS  Google Scholar 

  41. J. Hu, F. C. Ma, and S. Y. Lu, Nonferrous Metal Mater. Eng. 40 (2), 1 (2019).

    Google Scholar 

  42. Y. Q. Wang, Preparation and Properties of Low Modulus Porous Ti–Mg Biocomposites (Nanjing University of Aeronautics and Astronautics, Nanjing, 2010).

    Google Scholar 

  43. X. J. Chen, Z. M. Li, and J. W. Li, Hot Working Tech. 250 (12), 30 (2008).

    Google Scholar 

  44. P. Z. Xia, Y. Xu, Y. Q. Cai, et al., Heat Treat. Met. 47 (9), 18 (2022).

    Google Scholar 

  45. Q. Chen, Preparation and Properties of High Entropy Alloy Reinforced Aluminum Matrix Composites (South China University of Technology, Guangzhou, 2016).

    Google Scholar 

  46. H. H. Wang, S. Y. He, Y. Xu, et al., Iron Steel Vanadium Titanium 39 (6), 48 (2018).

    CAS  Google Scholar 

  47. Y. Y. Du and K. Liu, Rare Metal Mater. Eng. 51 (7), 2552 (2022).

    CAS  Google Scholar 

  48. Z. Esen, E Bütev, M. S. Karakaş, et al., J. Mech. Behav. Biomed. Mater. 273 (14), 63 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank North China University of Science and Technology for supporting equipment. Any opinions, findings, conclusions and recommendation expressed in this work are those of authors and do not necessarily reflect the views of the sponsoring agencies. The authors acknowledge the National Science Foundation of China (Grant no. 51874140 and 52371026), Hebei Natural Science Foundation of China (Grant no. C2018209270), College students’ innovation and entrepreneurship training program of North China University of Science and Technology (no. X2021222).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cai.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, S., Cai, Y. et al. Study of the Preparation and Properties of Biomedical Ti–Mg Composites. Russ. J. Phys. Chem. B 18, 9–22 (2024). https://doi.org/10.1134/S1990793124010202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010202

Keywords:

Navigation