Skip to main content
Log in

Quantum-Chemical Calculations of the Enthalpy of Formation for 5/6/5 Tricyclic Tetrazine Derivatives Annelated with Nitrotriazoles

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper presents the study of the calculated physicochemical properties of new high-energy 5/6/5 tricyclic structures, which are 1,2,3,4- or 1,2,4,5-tetrazines, fused with a pair of 1H-1,2,4-, 4H-1,2,4-, or 1H-1,2,3-triazoles. The values of the enthalpy of formation in the gaseous phase are determined by high-performance quantum-chemical calculations (in the Gaussian 09 program package) using various methods for solving the stationary Schrödinger equation, including G4, G4MP2, ωB97XD/aug-cc-pVTZ, CBS-APNO, CBS-QB3, CBS-4M, B3LYP/6-311+G(2d,p), and M062X/6-311+G(2d,p). The results of the calculations obtained by the methods of atomization and isogyric reactions are analyzed. Various calculation methods are compared in terms of accuracy and time consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. P. Yin, Q. Zhang, and J. M. Shreeve, Acc. Chem. Res. 49, 4 (2016). https://doi.org/10.1021/acs.accounts.5b00477

    Article  CAS  PubMed  Google Scholar 

  2. Y. Qu and S. P. Babailov, J. Mater. Chem. A. 6, 1915 (2018). https://doi.org/10.1039/C7TA09593G

    Article  CAS  Google Scholar 

  3. C. Yongjin and B. Shuhong, Johnson Matthey Technol. Rev. 63, 51 (2019). https://doi.org/10.1595/205651319x15421043166627

    Article  CAS  Google Scholar 

  4. L. L. Fershtat and N. N. Makhova, ChemPlusChem 85, 12 (2020). https://doi.org/10.1002/cplu.201900542

    Article  CAS  Google Scholar 

  5. H. Gao, Q. Zhang, and J. M. Shreeve, J. Mater. Chem. A 8, 4193 (2020). https://doi.org/10.1039/C9TA12704F

    Article  CAS  Google Scholar 

  6. J. Zhang, J. Zhou, F. Bi, and B. Wang, Chin. Chem. Lett. 31, 2375 (2020). https://doi.org/10.1016/j.cclet.2020.01.026

    Article  CAS  Google Scholar 

  7. J. Zhou, J. L. Zhang, B. Z. Wang, et al., FirePhysChem. 2, 83 (2022). https://doi.org/10.1016/j.fpc.2021.09.005

    Article  Google Scholar 

  8. J. Tang, H. Yang, Y. Cui, and G. Cheng, Mater. Chem. Front. 5, 7108 (2021). https://doi.org/10.1039/D1QM00916H

    Article  CAS  Google Scholar 

  9. Other Tetrazines and Pentazines in Comprehensive Heterocyclic Chemistry IV, Ed. by D. S. Black, J. Cossy, and C. V. Stevens (Elsevier Science, Amsterdam, 2022). https://doi.org/10.1016/B978-0-12-818655-8.00064-0

    Book  Google Scholar 

  10. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, and V. A. Tartakovsky, Russ. Chem. Rev. 89, 1 (2020). https://doi.org/10.1070/RCR4908

    Article  CAS  Google Scholar 

  11. S. G. Zlotin, A. M. Churakov, M. P. Egorov, et al., Mendeleev Commun. 31, 731 (2021). https://doi.org/10.1016/j.mencom.2021.11.001

    Article  CAS  Google Scholar 

  12. A. O. Shvets, A. A. Konnov, M. S. Klenov, et al., Russ. Chem. Bull., Int. Ed. 69, 739 (2020). https://doi.org/10.1007/s11172-020-2826-3

    Article  CAS  Google Scholar 

  13. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, et al., Russ. Chem. Bull., Int. Ed. 70, 1599 (2021). https://doi.org/10.1007/s11172-021-3256-6

    Article  CAS  Google Scholar 

  14. I. N. Zyuzin, V. M. Volokhov, and D. B. Lempert, Russ. J. Phys. Chem. B 15, 810 (2021). https://doi.org/10.1134/S1990793121050109

    Article  CAS  Google Scholar 

  15. I. N. Zyuzin, I. Yu. Gudkova, and D. B. Lempert, Russ. J. Phys. Chem. B 15, 611 (2021). https://doi.org/10.1134/S1990793121040138

    Article  CAS  Google Scholar 

  16. V. V. Zakharov, N. V. Chukanov, G. V. Shilov, et al., Russ. J. Phys. Chem. B 15, 622 (2021). https://doi.org/10.1134/S1990793121040126

    Article  CAS  Google Scholar 

  17. L. L. Fershtat, FirePhysChem 3 (1), 78 (2023). https://doi.org/10.1016/j.fpc.2022.09.005

  18. D. E. Chavez, J. C. Bottaro, M. Petrie, and D. A. Parrish, Angew. Chem. Int. Ed. 54, 12973 (2015). https://doi.org/10.1002/anie.201506744

    Article  CAS  Google Scholar 

  19. Y. Tang, D. Kumar, and J. M. Shreeve, J. Am. Chem. Soc. 139, 13684 (2017). https://doi.org/10.1021/jacs.7b08789

    Article  CAS  PubMed  Google Scholar 

  20. Y. X. Tang, C. L. He, P. Yin, et al., Eur. J. Org. Chem. 19, 2273 (2018). https://doi.org/10.1002/ejoc.201800347

    Article  CAS  Google Scholar 

  21. G. F. Rudakov, V. P. Sinditskii, I. A. Andreeva, A. I. Botnikova, P. R. Veselkina, Sh. K. Kostanyan, N. V. Yudin, V. V. Serushkin, G. V. Cherkaev, and O. V. Dorofeeva, Chem. Eng. J. 450 (Part 3), 138073 (2022). https://doi.org/10.1016/j.cej.2022.138073

  22. V. M. Volokhov, E. S. Amosova, A. V. Volokhov, et al., Comput. Theor. Chem. 1209, 113608 (2022). https://doi.org/10.1016/j.comptc.2022.113608

    Article  CAS  Google Scholar 

  23. L. A. Curtiss, P. C. Redfern, K., J. Raghavachari, Chem. Phys. 126, 084108 (2007). https://doi.org/10.1063/1.2436888

    Article  CAS  Google Scholar 

  24. A. Nirwan and V. D. Ghule, Theor. Chem. Acc. 137, 1 (2018). https://doi.org/10.1007/s00214-018-2300-6

    Article  CAS  Google Scholar 

  25. M. A. Suntsova and O. V. Dorofeeva, J. Chem. Eng. Data. 61, 313 (2016). https://doi.org/10.1021/acs.jced.5b00558

    Article  CAS  Google Scholar 

  26. J. Glorian, K. T. Han, S. Braun, and B. Baschung, Propellants Explos. Pyrotech. 46, 124 (2021). https://doi.org/10.1002/prep.202000187

    Article  CAS  Google Scholar 

  27. K. K. Irikura and D. J. Frurip, Computational Thermochemistry, ACS Symposium Series 667 (Am. Chem. Soc., Washington, 1998).

  28. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov, et al., in Parallel Computational Technologies. PCT 2020, Ed. by L. Sokolinsky and M. Zymbler, Communications in Computer and Information Science (Springer, Cham, 2020), Vol. 1263, p. 291. https://doi.org/10.1007/978-3-030-55326-5_21

    Book  Google Scholar 

  29. Supercomputing. RuSCDays 2020, Ed. by V. Voevodin and S. Sobolev, Communications in Computer and Information Science (Springer, Cham, 2020), Vol. 1331, p. 310. https://doi.org/10.1007/978-3-030-64616-5_27

    Book  Google Scholar 

  30. D. B. Lempert, V. M. Volokhov, I. N. Zyuzin, et al., Russ. J. Appl. Chem. 93, 1852 (2020). https://doi.org/10.1134/S1070427220120071

    Article  CAS  Google Scholar 

  31. V. M. Volokhov, E. S. Amosova, A. V. Volokhov, et al., Supercomput. Front. Innov. 7, 68 (2020). https://doi.org/10.14529/jsfi200406

    Article  Google Scholar 

  32. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov, et al., Russ. J. Phys. Chem. B 15, 12 (2021). https://doi.org/10.1134/S1990793121010127

    Article  CAS  Google Scholar 

  33. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov, et al., Russ. J. Inorg. Chem. 66, 78 (2021). https://doi.org/10.1134/S0036023621010113

    Article  CAS  Google Scholar 

  34. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464906

    Article  CAS  Google Scholar 

  35. B. J. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993). https://doi.org/10.1063/1.464906

    Article  CAS  Google Scholar 

  36. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  37. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  38. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 127, 124105 (2007). https://doi.org/10.1063/1.2770701

    Article  CAS  PubMed  Google Scholar 

  39. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, Comput. Mol. Sci. 1, 810 (2011). https://doi.org/10.1002/wcms.59

    Article  CAS  Google Scholar 

  40. J. A. Montgomery Jr. and M. J. Frisch, et al., J. Chem. Phys. 112, 6532 (2000). https://doi.org/10.1063/1.481224

    Article  CAS  Google Scholar 

  41. G. A. Petersson., D. K. Malick, W. G. Wilson, et al., J. Chem. Phys. 109, 10570 (1998).

    Article  CAS  Google Scholar 

  42. E. F. Byrd and B. M. Rice, J. Phys. Chem. A 110, 1005 (2006). https://doi.org/10.1021/jp0536192

    Article  CAS  PubMed  Google Scholar 

  43. E. F. Byrd and B. M. Rice, J. Phys. Chem. A 113, 5813 (2009). https://doi.org/10.1021/jp806520b

    Article  CAS  Google Scholar 

  44. V. G. Kiselev and C. F. Goldsmith, J. Phys. Chem. A 123, 9818 (2019). https://doi.org/10.1021/acs.jpca.9b08356

    Article  CAS  PubMed  Google Scholar 

  45. A. Karton, J. M. L. Martin, J. Chem. Phys. 136, 124114 (2012). https://doi.org/10.1063/1.3697678

    Article  CAS  PubMed  Google Scholar 

  46. V. D. Ghule, Comput. Theor. Chem. 992, 92 (2012). https://doi.org/10.1016/j.comptc.2012.05.007

    Article  CAS  Google Scholar 

  47. Anjali Maan, Vikas D. Ghule, and Srinivas Dharavath, J. Phys. Chem. A 127 (31), 6467–6475 (2023). https://doi.org/10.1021/acs.jpca.3c03483

Download references

ACKNOWLEDGMENTS

This study was carried out using the equipment of the Center for Collective Use of High-Performance Computing Resources of Moscow State University [46–48] (projects Enthalpy-2065 and Enthalpy-2219) and the computing resources of the Institute of Problems of Chemical Physics of the Russian Academy of Sciences. V.V. Parakhin was involved in setting the scientific problem, reviewing the literature, analyzing the results, and writing and editing the article.

Funding

V.M. Volokhov, E.S. Amosova, and A.V. Volokhov carried out quantum-chemical research in accordance with a state assignment (state registration numbers AAAA-A19-119120690042-9 and AAAA-A19-119111390022-2). Calculations using resource-intensive methods were carried out with the support of the Russian Foundation for Basic Research as part of project 20-07-00319. D.B. Lempert assessed the energy potential of the compounds as part of a state assignment (state registration number AAAA-A19-119101690058-9). T.S. Zyubina calculated and analyzed the IR-spectra and atomic displacements as part of a state assignment (state registration number AAAA-A19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Amosova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokhov, V.M., Parakhin, V.V., Amosova, E.S. et al. Quantum-Chemical Calculations of the Enthalpy of Formation for 5/6/5 Tricyclic Tetrazine Derivatives Annelated with Nitrotriazoles. Russ. J. Phys. Chem. B 18, 28–36 (2024). https://doi.org/10.1134/S1990793124010196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010196

Keywords:

Navigation