Skip to main content
Log in

Influence of a Directed Electric Field on the Features of Structural Formations in Nitrile-Butadiene Rubber Films

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The influence of the direction of a constant electric field on the properties and structural features of thin films of nitrile-butadiene rubber (NBR) formed on copper substrates from a solution in chloroform is studied. It is shown that the greatest effect in the modification of properties associated with structural transformations in the process of formation of elastomer films occurs on the negative electrode, the cathode, when the electric field lines are directed toward the electrode surface. The method of differential scanning calorimetry shows the structural differences between films formed outside and in the presence of electric fields. The films formed in the fields have different electrical characteristics from the films formed outside the field. The IR spectroscopy methods confirm the structuring and cyclization of NBR molecules on the surface of the film formed on the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. P. P. Levin, A. F. Efremkin, and I. V. Khudyakov, “Recombination kinetics of radicals in polymers: Magnetic field effects,” Russ. J. Phys. Chem. B 14 (3), 522–525 (2020). https://doi.org/10.1134/S1990793120030197

    Article  CAS  Google Scholar 

  2. Yu. V. Tertyshnaya and M. V. Podzorova, “Effect of UV irradiation on the structural and dynamic characteristics of polylactide and its blends with polyethylene,” Russ. J. Phys. Chem. B 14 (1), 167–175 (2020). https://doi.org/10.1134/S1990793120010170

    Article  CAS  Google Scholar 

  3. A. I. Slutsker, Yu. I. Polikarpov, and B. J. Gilyarov, “On elementary acts and kinetics of electrical destruction of polymers,” JTF 2006 (12), 52 (2006).

    Google Scholar 

  4. Kai Wu, L. A. Dissado, and T. Okamoto, “Percolation model for electrical breakdown in insulating polymers,” Appl. Phys. Lett. 85 (19), 4454 (2004). https://doi.org/10.1063/1.1819526

    Article  CAS  Google Scholar 

  5. V. E. Gul and V. E. Basin, “Destruction of polymers in the field of mechanical and electrical forces,” Rep. Acad. Sci. USSR 241 (5), 45 (1978).

    Google Scholar 

  6. I. Yu. Dmitriyev, Ye. Yu. Rozova, Z. F. Zoolshoyev, P. V. Nesterov, I. S. Kuryndin, Ye. S. Kraynyukov, S. V. Lebedev, and G. K. Yel’yashevich, “Electromechanical response and structure of the chitosan-polyaniline composite system,” Vysokomol. Soed. Ser. A 60 (3), 217 (2018).

    Google Scholar 

  7. M. A. Smirnov, N. V. Bobrova, I. Yu. Dmitriev, V. Bukolšek, and G. K. Elyashevich, “Electroactive hydrogels based on poly(acrylic acid) and polypyrrole,” Polym. Sci. A 53, 67 (2011). https://doi.org/10.1134/S0965545X11010068

    Article  CAS  Google Scholar 

  8. S. A. Dudrovskiy and N. K. Balabayev, “Computer simulation of high-frequency heating of a protonated polyethylene oxide chain in vacuum,” Vysokomol. Soed. A 60 (3), 249 (2018).

    Google Scholar 

  9. V. Svorcık, R. Gardasova, V. Rybka, V. Hnatowicz, J. Cervena, and J. Plesek, “Effect of electrical field on dipoles in polymer composites,” J. Appl. Polym. Sci. 91, 40 (2004).

    Article  Google Scholar 

  10. G. Pallavi, R. Mohit, et al., “Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties,” J. Polym. 89 (10), 1016 (2016).

    Google Scholar 

  11. N. N. Komova, “AC conductance of thin polychloroprene films formed in an electric field. Fine chemical technologies,” 13 (1), 75 (2018). https://doi.org/10.32362/2410-6593-2018-13-1-75-92

  12. N. M. Livanova and A. A. Popov, “Free volume and the rates of the ozone degradation of vulcanizates’ statistical and block nitrile–butadiene rubbers,” Russ. J. Phys. Chem. B 14 (3), 541–546 (2020). https://doi.org/10.1134/S1990793120030215

    Article  CAS  Google Scholar 

  13. Encyclopedia of Polymers: In 3 Volumes (Soviet Encyclopedia, Moscow, 1977), Vol. 1, pp. 310–320.

  14. N. M. Livanova, V. A. Khazova, E. S. Pravda, and Yu. O. Adriasyan, “Topological, micromolecular, and supramolecular structure of ethylene-propylenediene elastomers and patterns of their combination with nitrile butadiene rubbers,” Russ. J. Phys. Chem. B 16 (4), 756–764 (2022). https://doi.org/10.1134/S1990793122040108

    Article  CAS  Google Scholar 

  15. I. Boginskaya, M. Sedova, A. Baburin, K. Afanas’ev, A. Zverev, V. Echeistov, V. Ryzhkov, I. Rodionov, B. Tonanaiskii, I. Ryzhikov, and A. Lagarkov, “SERS-active substrates nanoengineering based on e-beam evaporated self-assembled silver films,” Appl. Sci. 9 (19), 3988 (2019). https://doi.org/10.3390/app9193988

    Article  CAS  Google Scholar 

  16. A. I. Malyshev and A. S. Help, Rubber Analysis (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  17. Yu. S. Zuev and T. G. Degtev, Durability of Elastomers under Operational Conditions (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  18. V. N. Papkov, Nitrile Butadiene Rubbers. Synthesis and Properties, Ed. by V. N. Papkov, Yu. K. Gusev, E. M. Rivin, and Ye. V. Blinov (Voronezh, 2014) [in Russian].

    Google Scholar 

  19. L. V. Gaydukova, L. V. Agibalova, I. V. Baranets, T. A. Nadervel’, and S. K. Kurlyand, “Efficiency of a comprehensive study of copolymers using the example of industrial nitrile butadiene rubbers,” Izv. SPbGT-I(TU), No. 57, 83 (2021).

  20. G. M. Bartenev, R. M. Aliguliyev, and D. M. Khiteyeva, “Relaxation transitions in polyethylene,” Vysokomol. Soed. A 23 (9), 2003 (1981).

    CAS  Google Scholar 

  21. G. M. Bartenev, Structure and Relaxation Properties of Elastomers (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  22. L. Pauling, Chemical Bond (Cornell University Press, Ithaca, NY, 1967).

    Google Scholar 

  23. A. F. Diaz and J. A. Logan, “Electroactive polyaniline films,” J. Electroanal. Chem. 111, 111 (1980). https://doi.org/10.1016/S0022-0728(80)80081-7

    Article  CAS  Google Scholar 

  24. A. A. Averkin, A. V. Ayrapetyants, Yu. V. Ilisavskiy, et al., “The influence of stretching and confining pressure on the electrical conductivity of thermally treated polyacrylonitrile,” Dokl. Akad. Nauk SSSR 152, 1140 (1963).

    CAS  Google Scholar 

  25. T. Blythe and D. Bloor, Electrical Properties of Polymer (Cambridge University Press, 2005).

    Google Scholar 

  26. G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers (Khimiya, Moscow, 1992) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Komova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibryaeva, L.S., Komova, N.N., Chizhenok, V.A. et al. Influence of a Directed Electric Field on the Features of Structural Formations in Nitrile-Butadiene Rubber Films. Russ. J. Phys. Chem. B 18, 275–282 (2024). https://doi.org/10.1134/S1990793124010184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010184

Keywords:

Navigation