Skip to main content
Log in

Magneto-Biological Physics

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Since the appearance of magneto-biology as an intriguing field of Big Biology, the most significant event, which was happened in it, was the discovery of huge isotope effects, when natural magnesium, calcium and zinc ions in the catalytic sites of enzymes were replaced with nuclear spin magnetic ions 25Mg2+, 43Ca2+, and 67Zn2+ of their stable isotopes. This discovery elucidated physical sense and the origin of numerous magneto-biological effects; it has illuminated all magneto-biology and introduced it as a respectable science. Now the spin concept and radical pair mechanism are generally accepted and overwhelmingly used to interpret experimentally detected magneto-biological effects. In terms of the radical pair mechanism the DNA repair, Hayflick limit and biological longevity under magnetic control are discussed. It is emphasized that magneto-biology is a means to better understand Big Biology itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. Meister, “Physical limits to magneto-genetics,” Elife 5, e17210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. L. Buchachenko, “Why magnetic and electromagnetic effects in biology are irreproducible and contradictory?” Bioelectromagnetics 37, 1–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. A. V. Chervyakov, A. Y. Chernyavsky, D. O. Sinitsyn, and M. A. Piradov, “Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation,” Front. Hum. Neurosci. 9, 303–317 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. P. Piszczek, K. Wójcik-Piotrowicz, K. Gil, et al., “Immunity and electromagnetic fields,” Environ. Res. 200, 111505 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. B. Selmaoui and Y. Touitou, “Association between mobile phone radiation exposure and the secretion of melatonin and cortisol. Two markers of the circadian system,” Bioelectromagnetics 42, 5–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. U. G. Letuta, “Magnesium magnetic isotope effects in microbiology,” Arch. Microbiol. 203, 1853–1861 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. U. G. Letuta, V. L. Berdinskiy, C. Udagawa, et al., “Enzymatic mechanisms of biological magnetic sensitivity,” Bioelectromagnetics 38, 511–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. B. Zhang, X. Yuan, H. Lv, et al., “Biophysical mechanisms underlying the effects of static magnetic fields on biological systems,” Prog. Biophys. Mol. Biol. 177, 14–23 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. B. Saletnik, G. Zaguła, A. Saletnik, et al., “Method for prolonging the shelf life of apples after storage,” Appl. Sci. 12, 3975–3981 (2022).

    Article  CAS  Google Scholar 

  10. K. Bera, S. Ghosh, S. Sadhukhan, and P. Dutta, “Magneto-priming: A novel technique towards improved seed germinability and stress responses: From basics to contemporary advancements,” in Biology and Biotechnology of Environmental Stress Tolerance in Plants, Vol. 3: Sustainable Approaches for Enhancing Environmental Stress Tolerance, Ed. by A. Roychoudhury (Apple Academic Press, CRC Press, 2023).

  11. X. Zhang, K. Yarema, and A. Xu, Biological Effects of Static Magnetic Fields, 2nd ed. (Springer Nature, 2023).

    Book  Google Scholar 

  12. Magneto-Science, Ed. by M. Yamaguchi and Y. Tanimoto (Kodansha-Springer, Tokyo, 2006).

    Google Scholar 

  13. K. M. Salikhov, Yu. N. Molin, R. Z. Sagdeev, and A. L. Buchachenko, Spin Polarization and Magnetic Effects in Radical Reactions (Elsevier, Amsterdam, 1984).

    Google Scholar 

  14. A. L. Buchachenko, Magnetic Isotope Effects in Chemistry and Biochemistry (Nova Science, New York, 2009).

    Google Scholar 

  15. A. L. Buchachenko, Magneto-Biology and Medicine (Nova Science, New York, 2014).

    Google Scholar 

  16. M. E. Alkis, M. Z. Akdag, and S. Dasdag, “Effects of low-intensity microwave radiation on oxidant-antioxidant parameters and dna damage in the liver of rats,” Bioelectromagnetics 42, 76–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. B. Zhang and L. Tian, “Reactive oxygen species: Potential regulatory molecules in response to hypomagnetic field exposure,” Bioelectromagnetics 41, 573–580 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. A. L. Buchachenko, A. A. Bukhvostov, K. V. Ermakov, et al., “A specific role of magnetic isotopes in biological and ecological systems,” Prog. Biophys. Mol. Biol. 155, 1–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. H. Zadeh-Haghighi and C. Simon, “Magnetic field effects in biology from the perspective of the radical pair mechanism,” J. R. Soc. Interface 19, 20220325 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. L. Buchachenko, “Magnetic field dependent molecular and chemical processes in biochemistry, genetics and medicine,” Russ. Chem. Rev. 83, 1–12 (2014).

    Article  Google Scholar 

  21. A. L. Buchachenko, A. Bukhvostov, K. Ermakov, and D. Kuznetsov, “Nuclear spin selectivity in enzymatic catalysis,” Archives Biochem. Biophys. 667, 30–35 (2019).

    Article  CAS  Google Scholar 

  22. X. Liu, X. Yan, S. Zhang, Z. Liu, T. Win, and L. Ren, “The effects of electromagnetic fields on human health: Recent advances and future,” J. Bionic Eng. 18, 210 (2021).

    Article  CAS  Google Scholar 

  23. A. L. Buchachenko, “Recent advances in spin chemistry,” Pure Appl. Chem. 72, 2243–2258 (2000).

    Article  CAS  Google Scholar 

  24. A. L. Buchachenko, D. A. Kouznetsov, S. E. Arkhangelsky, M. A. Orlova, and A. A. Markaryan, “Spin biochemistry: Magnetic 24Mg-25Mg-26Mg isotope effect in enzymatic phosphorylation,” Cell Biochem. Biophys. 43, 243–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. R. G. Lawler and G. T. Evans, Some chemical consequences of magnetic interactions in radical pairs,” Ind. Chim. Belges 36, 1087 (1971).

    CAS  Google Scholar 

  26. A. L. Buchachenko and G. A. Nikiforov, “Isotope fractionation induced by magnetic interactions,” Dokl. Akad. Nauk USSR 228, 379 (1976).

    CAS  Google Scholar 

  27. A. L. Buchachenko, “MIE versus CIE: Comparative analysis of magnetic and classical isotope effects,” Chem. Rev. 95, 2507–2528 (1995).

    Article  CAS  Google Scholar 

  28. A. L. Buchachenko, “Magnetic isotope effect: Nuclear spin control of chemical reactions,” J. Phys. Chem. A 105, 9995–10011 (2001).

    Article  CAS  Google Scholar 

  29. A. L. Buchachenko, “Mass-independent isotope effects,” J. Phys. Chem. B 117, 2231–2238 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. K. A. McLauchlan and U. E. Steiner, “The spin-correlated radical pair,” Mol. Phys. 73, 241–263 (1991).

    Article  CAS  Google Scholar 

  31. J. R. Woodward, “Radical pairs in solution,” Prog. React. Kinet. Mech. 27, 165–207 (2002).

    Article  CAS  Google Scholar 

  32. B. Adam, I. Sinayskiy, and F. Petruccione, “An open quantum system approach to the radical pair mechanism,” Sci. Rep. 8, 1–10 (2018).

    Google Scholar 

  33. A. L. Buchachenko and V. L. Berdinsky, “Cascade strategy of the chemically induced magnetic isotope fractionation,” J. Phys. Chem. A 103, 865–870 (1999).

    Article  CAS  Google Scholar 

  34. Ch. B. Grissom, “Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical-pair recombination,” Chem. Rev. 95, 3 (1995).

    Article  CAS  Google Scholar 

  35. A. R. Jones, “Magnetic field effects in proteins,” Mol. Phys. 114, 1691 (2016).

    Article  CAS  Google Scholar 

  36. A. L. Buchachenko and R. G. Lawler, “New possibilities for magnetic control of chemical and biochemical reactions,” Acc. Chem. Res. 50, 877 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. A. L. Buchachenko, D. A. Kouznetsov, N. N. Breslavskaya, L. N. Shchegoleva, and S. E. Arkhangelsky, “Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism,” Chem. Phys. Lett. 505, 130–134 (2011).

    Article  CAS  Google Scholar 

  38. A. L. Buchachenko, D. A. Kouznetsov, and S. E. Arkhangelsky, “Magnetic isotope effect in the phosphoglycerate kinase phosphorylation,” Proc. Nat. Acad. Sci. U.S.A. 102, 10793–10796 (2005).

    Article  CAS  Google Scholar 

  39. A. Markaryan, A. L. Buchachenko, D. A. Kouznetsov, S. E. Arkhangelsky, and M. A. Orlova, “Spin biochemistry: Intramitochondrial nucleotide phosphorylation,” Mitochondrion 5, 67–69 (2005).

    Article  Google Scholar 

  40. A. L. Buchachenko, D. A. Kouznetsov, and N. N. Breslavskaya, “Ion-radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control,” J. Phys. Chem. B 114, 2287–2292 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. A. L. Buchachenko, D. A. Kouznetsov, and N. N. Breslavskaya, “Chemistry of enzymatic ATP synthesis: An insight through the isotope window,” Chem. Rev. 112, 2042 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. A. L. Buchachenko and D. A. Kuznetsov, “Magnetic control of enzymatic phosphorylation,” J. Phys. Chem. Biophys. 4, 142–151 (2014).

    Google Scholar 

  43. A. L. Buchachenko and D. A. Kouznetsov, “Magnetic field affects enzymatic ATP synthesis,” J. Am. Chem. Soc. 130, 12868 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. J. B. Pedersen, A. L. Buchachenko, and N. N. Lukzen, “On the magnetic field and isotope effects in enzymatic phosphorylation,” Chem. Phys. Lett. 434, 139–143 (2007).

    Article  Google Scholar 

  45. I. Barashkova, N. Breslavskaya, L. Wasserman, and A. Buchachenko, “Isotope and spin effects induced by compression of paramagnetic molecules,” Physchem 2, 253–260 (2022).

    Article  CAS  Google Scholar 

  46. A. L. Buchachenko, “Compressed molecules and enzymes,” Russ. J. Phys. Chem. B 16, 9–17 (2022).

    Article  CAS  Google Scholar 

  47. N. N. Breslavskaya and A. L. Buchachenko, “Isotope effects induced by molecular compression,” J. Phys. Chem. A 124, 6352–6355 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. A. L. Buchachenko, A. P. Orlov, and D. A. Kuznetsov, “Magnetic isotope and magnetic field effects on the DNA synthesis,” Nucleic Acids Res. 41, 8300–8307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. L. Buchachenko, A. P. Orlov, and D. A. Kuznetsov, “Magnetic control of the DNA synthesis,” Chem. Phys. Lett. 586, 138–142 (2013).

    Article  CAS  Google Scholar 

  50. S. V. Stovbun, D. V. Zlenko, A. A. Bukhvostov, A. A. Vedenkin, A. A. Skoblin, D. A. Kuznetsov, and A. L. Buchachenko, “Magnetic field and nuclear spin influence on the DNA synthesis rate,” Sci. Rep. 13, 465 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. E. Arkhangelskaya, N. Vorobyeva, S. Leonov, A. N. Osipov, and A. L. Buchachenko, “Magnetic isotope effect on the repair of radiation-induced DNA damage,” Russ. J. Phys. Chem. B 14, 314−317 (2020).

    Article  CAS  Google Scholar 

  52. A. L. Buchachenko, “Does biological longevity depend on the magnetic fields?” Russ. J. Phys. Chem. B 17, 128−134 (2023).

    Article  CAS  Google Scholar 

  53. D. A. Kuznetsov and A. L. Buchachenko, “Nuclear magnetic ions of magnesium, calcium, and zinc as a powerful and universal means for killing cancer cells,” Russ. J. Phys. Chem. B 12, 690–694 (2018).

    Article  CAS  Google Scholar 

  54. A. L. Buchachenko and D. A. Kuznetsov, “Genes and cancer under magnetic control,” Russ. J. Phys. Chem. B 15, 1–11 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Buchachenko.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchachenko, A.L. Magneto-Biological Physics. Russ. J. Phys. Chem. B 18, 229–238 (2024). https://doi.org/10.1134/S1990793124010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010068

Keywords:

Navigation