Skip to main content
Log in

Effect of Organic Corrosion Inhibitors on the Kinetics of the Cathodic Hydrogen Evolution Reaction on Steel in a Sulfuric Acid Solution

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The kinetics of the cathodic reduction of hydrogen on low-carbon steel in a sulfuric acid solution containing a mixture of quaternary ammonium salts (QASs) (catamine AB) and 3-substituted 1,2,4-triazole (IFKhAN-92 inhibitor) are studied. The main rate constants of the stages of evolution of gaseous hydrogen and the introduction of hydrogen atoms into the metal are determined. It is shown that these substances reduce the reaction rate of the discharge of H+ ions, change the ratio between the concentrations of H atoms on the surface and in the phase of the metal, and, as a result, reduce the amount of hydrogen absorbed by steel. The most effective inhibitor of corrosion and hydrogenation of steel is IFKhAN-92, due to the formation of a polymolecular protective layer of the inhibitor on the metal surface. The data of X-ray photoelectron spectroscopy of the steel surface show that the protective layer has a thickness of not more than 4 nm and consists of IFKhAN-92 molecules associated with the steel surface by chemical interaction; and inside the layer, by physical interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. I. B. Obot, A. Meroufel, I. B. Onyeachu, et al., Mol. Liq. 296, 111760 (2019). https://doi.org/10.1016/j.molliq.2019.111760

    Article  CAS  Google Scholar 

  2. C. Verma, M. A. Quraishi, and E. E. Ebenso, Int. J. Corros. Scale Inhib. 9, 1261 (2020). https://doi.org/10.17675/2305-6894-2020-9-4-5

    Article  CAS  Google Scholar 

  3. Ya. G. Avdeev, I. G. Gorichev, and A.Yu. Luchkin, Int. J. Corros. Scale Inhib. 1, 26 (2012). https://doi.org/10.17675/2305-6894-2012-1-1-026-037

    Article  Google Scholar 

  4. G. Schmitt, Br. Corros. J. 19 (4), 165 (1984). https://doi.org/10.1179/000705984798273100

    Article  CAS  Google Scholar 

  5. Ya. G. Avdeev and Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 10, 1069 (2021). https://doi.org/10.17675/2305-6894-2021-10-3-15

    Article  CAS  Google Scholar 

  6. Ya. G. Avdeev, Int. J. Corros. Scale Inhib. 7, 460 (2018). https://doi.org/10.17675/2305-6894-2018-7-4-1

    Article  CAS  Google Scholar 

  7. K. Rasheeda, V. D. P. Alva, P. A. Krishnaprasad, and S. Samshuddin, Int. J. Corros. Scale Inhib. 7, 48 (2018). https://doi.org/10.17675/2305-6894-2018-7-1-5

    Article  CAS  Google Scholar 

  8. H. E. Salman, A. A. Balakit, and L. B. Jasim, Int. J. Corros. Scale Inhib. 8, 539 (2019). https://doi.org/10.17675/2305-6894-2019-8-3-5

    Article  CAS  Google Scholar 

  9. M. Zebida, O. Benali, U. Maschke, and M. Trainsel, Int. J. Corros. Scale Inhib. 8, 613 (2019). https://doi.org/10.17675/2305-6894-2019-8-3-11

    Article  CAS  Google Scholar 

  10. F. O. Edoziuno, A. A. Adediran, B. U. Odoni, M. Oki, and O.S. Adesina, Int. J. Corros. Scale Inhib. 9, 1049 (2020). https://doi.org/10.17675/2305-6894-2020-9-3-17

    Article  CAS  Google Scholar 

  11. Ya. G. Avdeev, E. N. Yurasova, K. L. Anfilov, and T. A. Vagramyan, Int. J. Corros. Scale Inhib. 7, 87 (2018). https://doi.org/10.17675/2305-6894-2018-7-1-8

    Article  CAS  Google Scholar 

  12. A. Fawzy, T. A. Farghaly, A. A. Al Bahir, et al., Mol. Struct. 1223, 129318 (2021). https://doi.org/10.1016/j.molstruc.2020.129318

    Article  CAS  Google Scholar 

  13. M. Goyal, H. Vashisht, S. Kumar, and I. Bahadur, Mol. Liq. 261, 162 (2018). https://doi.org/10.1016/j.molliq.2018.04.043

    Article  CAS  Google Scholar 

  14. W. Gong, B. Xu, X. Yin, et al., J. Taiwan Inst. Chem. Eng. 97, 466 (2019). https://doi.org/10.1016/j.jtice.2019.02.018

    Article  CAS  Google Scholar 

  15. Y. Xu, X. Guo, N. Chen, L. Zhang, and W. Zhao, Colloids Surf. A: Physicochem. Eng. Asp. 610, 125974 (2021). https://doi.org/10.1016/j.colsurfa.2020.125974

    Article  CAS  Google Scholar 

  16. M. Bouklah, B. Hammouti, M. Lagrenée, and F. Bentiss, Corros. Sci., 48 (9), 2831 (2006). https://doi.org/10.1016/j.corsci.2005.08.019

    Article  CAS  Google Scholar 

  17. A. M. Fekry and Riham R. Mohamed, Electrochim. Acta 55 (6), 1933 (2010). https://doi.org/10.1016/j.electacta.2009.11.011

    Article  CAS  Google Scholar 

  18. L. Tang, X. Li, L. Li, G. Mu, and G. Liu, Mater. Chem. Phys. 97 (2–3), 301 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.014

    Article  CAS  Google Scholar 

  19. Sh. Pournazari, M. H. Moayed, and M. Rahimizadeh, Corros. Sci. 71, 20 (2013). https://doi.org/10.1016/j.corsci.2013.01.019

    Article  CAS  Google Scholar 

  20. A. Jamal Abdul Nasser and M. Anwar Sathiq, Arab. J. Chem. 10 (1), S261 (2017). .https://doi.org/10.1016/j.arabjc.2012.07.032

    Article  CAS  Google Scholar 

  21. R. Fuchs-Godec, Colloids Surf. A: Physicochem. Eng. Asp. 280 (1–3), 130 (2006). https://doi.org/10.1016/j.colsurfa.2006.01.046

    Article  CAS  Google Scholar 

  22. Ya. G. Avdeev, P. A. Belinskii, Yu. I. Kuznetsov, and O. O. Zel’, Prot. Met. 43 (6), 587 (2007). https://doi.org/10.1134/S0033173207060112

    Article  CAS  Google Scholar 

  23. T. Zheng, J. Liu, M. Wang, et al., Corros. Sci. 199, 110199 (2022). https://doi.org/10.1016/j.corsci.2022.110199

    Article  CAS  Google Scholar 

  24. D. P. Schweinsberg and V. Ashworth, Corros. Sci. 28 (6), 539 (1988). https://doi.org/10.1016/0010-938X(88)90022-4

    Article  CAS  Google Scholar 

  25. L.-G. Qiu, Y. Wu, Y.-M. Wang, and X. Jiang, Corros. Sci. 50 (2), 576 (2008). https://doi.org/10.1016/j.corsci.2007.07.010

    Article  CAS  Google Scholar 

  26. A. E. Elkholy and F. El-Taib Heakal, J. Mol. Struct. 1156, 473 (2018). https://doi.org/10.1016/j.molstruc.2017.12.003

    Article  CAS  Google Scholar 

  27. S. A. Haladu, N. D. Mu’azu, S. A. Ali, et al., Mol. Liq. 350, 118533 (2022). https://doi.org/10.1016/j.molliq.2022.118533

    Article  CAS  Google Scholar 

  28. A. H. Tantawy, K. A. Soliman, H. M. Abd El-Lateef, Colloids Surf. A: Physicochem. Eng. Asp. 614, 126141 (2021). https://doi.org/10.1016/j.colsurfa.2021.126141

    Article  CAS  Google Scholar 

  29. O. A. Hazazi, M. Abdallah, E. A. M. Gad, Int. J. Electrochem. Sci. 9, 2237 (2014).

    Article  Google Scholar 

  30. H. Pianka, S. Falah, S. Zanna, et al., Coatings 11, 1512 (2021). https://doi.org/10.3390/coatings11121512

    Article  CAS  Google Scholar 

  31. K. R. Ansari, D. S. Chauhan, A. Singh, V. S. Saji, and M. A. Quraishi, in Corrosion Inhibitors in the Oil and Gas Industry, Ed. by V. S. Saji and S.A. Umoren (Wiley-VCH, Weinheim, 2020), pp. 153–176. https://doi.org/10.1002/9783527822140.ch6

    Book  Google Scholar 

  32. M. A. Quraishi, D. S. Chauhan, and V. S. Saji, in Heterocyclic Organic Corrosion Inhibitors, Ed. by M. A. Quraishi, D. S. Chauhan, and V. S. Saji (Elsevier, Amsterdam, 2020), pp. 87–131. https://doi.org/10.1016/B978-0-12-818558-2.00004-7

    Book  Google Scholar 

  33. N. Phadke Swathi, V. D. P. Alva, and S. Samshuddin, J. Bio- Tribo-Corros. 3, 42 (2017). https://doi.org/10.1007/s40735-017-0102-3

  34. Ya. G. Avdeev and Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 10, 480 (2021). https://doi.org/10.17675/2305-6894-2020-10-2-2

    Article  CAS  Google Scholar 

  35. Ya. G. Avdeev and Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 9, 1194 (2020). https://doi.org/10.17675/2305-6894-2020-9-4-3

    Article  CAS  Google Scholar 

  36. A. Pradhan, M. Vishwakarma, and S. K. Dwivedi, Mater. Today: Proc. 26, 3015 (2020). https://doi.org/10.1016/j.matpr.2020.02.627

    Article  CAS  Google Scholar 

  37. E. Ohaeri, U. Eduok, J. Szpunar, Int. J. Hydrogen Ener-gy 43, 14584 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.064

    Article  CAS  Google Scholar 

  38. Q. Liu, Q. Zhou, J. Venezuela, et al., Corros. Rev. 34 (3), 127 (2016). .https://doi.org/10.1515/corrrev-2015-0083

    Article  CAS  Google Scholar 

  39. E. Lunarska and K. Nikiforov, Corros. Rev. 26 (2–3), 173 (2008). https://doi.org/10.1515/corrrev.2008.173

    Article  CAS  Google Scholar 

  40. S. Ramamurthy and A. Atrens, Corros. Rev. 31, 1 (2013). https://doi.org/10.1515/corrrev-2012-0018

    Article  CAS  Google Scholar 

  41. N. V. Dokhlikova, S. A. Ozerin, S. V. Doronin, et al., Russ. J. Phys. Chem. B 16 (3), 461 (2022). https://doi.org/10.1134/S1990793122030137

    Article  CAS  Google Scholar 

  42. N. V. Dokhlikova, A. K. Gatin, S. Yu. Sarvadiy, et al., Russ. J. Phys. Chem. B 15 (4), 732 (2021). https://doi.org/10.1134/S1990793121040023

    Article  CAS  Google Scholar 

  43. N. V. Dokhlikova, A. K. Gatin, S. Yu. Sarvadiy, et al., Russ. J. Phys. Chem. B 16 (2), 361 (2022). https://doi.org/10.1134/S1990793122020166

    Article  CAS  Google Scholar 

  44. N. V. Dokhlikova, A. K. Gatin, S. Yu. Sarvadii, et al., Russ. J. Phys. Chem. B 14 (5), 733 (2020). https://doi.org/10.1134/S1990793120050036

    Article  CAS  Google Scholar 

  45. S. Muralidharan, M. A. Quraishi, and S. V. K. Iyer, Corros. Sci. 37, 1739 (1995). https://doi.org/10.1016/0010-938X(95)00068-U

    Article  CAS  Google Scholar 

  46. A. I. Marshakov, T. A. Nenasheva, A. A. Rybkina, and M. A. Maleeva, Prot. Met. 43, 77 (2007). https://doi.org/10.1134/S0033173207010110

    Article  CAS  Google Scholar 

  47. S. Hari Kumar, P. A. Vivekanand, and P. Kamaraj, Mater. Today: Proc. 36, 898 (2021). https://doi.org/10.1016/j.matpr.2020.07.027

    Article  CAS  Google Scholar 

  48. M. A. V. Devanathan and Z. Stachurski, Proc. R. Soc. Ser. A. Math. Phys. Sci. 270A, 90 (1962). https://doi.org/10.1098/rspa.1962.0205

  49. M. A. V. Devanathan and Z. Stachurski, J. Electrochem. Soc. 3, 619 (1964). https://doi.org/10.1149/1.2426195

    Article  Google Scholar 

  50. C. D. Wagner, L. E. Davis, M. V. Zeller, et al., Surf. In-terface Anal. 3, 211 (1981). https://doi.org/10.1002/sia.740030506

    Article  CAS  Google Scholar 

  51. D. A. Shirley, Phys. Rev. B 5, 4709 (1972). https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  52. R. N. Iyer, H. W. Pickering, and M. Zamanzadeh, J. Electrochem. Soc. 136, 2463 (1989). https://doi.org/10.1149/1.2097429

    Article  CAS  Google Scholar 

  53. B. N. Popov, J.-W. Lee, and M. B. Djukic, Handbook of Environmental Degradation of Materials, 3rd ed. (Elsevie-r, Amsterdam, 2018), pp. 133–162. https://doi.org/10.1016/B978-0-323-52472-8.00007-1

    Book  Google Scholar 

  54. A. I. Marshakov, A. A. Rybkina, and A. A. Skuratnik, Russ. J. Electrochem. 36, 101 (2000)https://doi.org/10.1007/BF02757529

    Article  Google Scholar 

  55. A. I. Marshakov and T. A. Nenasheva, Prot. Met. 37, 543 (2001). https://doi.org/10.1023/A:1012811428981

    Article  CAS  Google Scholar 

  56. B. B. Damaskin and B. N. Afanas’ev, Sov. Elektrokhim. 13 (8), 1099 (1977).

    CAS  Google Scholar 

  57. A. I. Marshakov and T. A. Nenasheva, Prot. Met. 38, 556 (2002). https://doi.org/10.1023/A:1021265903879

    Article  CAS  Google Scholar 

  58. B. N. Afanas’ev, Yu. P. Skobochkina, and G. G. Serdyukova, Physicochemical Bases of the Action of Corrosion Inhibitors (Izd. Udmurt. Gos. Umiv., Izhevsk, 1990) [in Russian].

    Google Scholar 

  59. K. Kiuchi and R. B. McLellan, Acta Metallurgica 31, 961 (1983). https://doi.org/10.1016/0001-6160(83)90192-X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank L.P. Kazanskii for his assistance in organizing the XPE studies and discussing their results.

Funding

This work is carried out as R&D “Chemical material resistance, protection of metals and other materials against corrosion and oxidation" (2022–2024), the Integrated National Information System reg. no. 122011300078-1, the inventory no. FFZS-2022-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. G. Avdeev.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, Y.G., Nenasheva, T.A., Luchkin, A.Y. et al. Effect of Organic Corrosion Inhibitors on the Kinetics of the Cathodic Hydrogen Evolution Reaction on Steel in a Sulfuric Acid Solution. Russ. J. Phys. Chem. B 18, 111–124 (2024). https://doi.org/10.1134/S1990793124010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010044

Keywords:

Navigation