Skip to main content
Log in

Theoretical Study of the Structural Stability, Electronic and Magnetic Properties of Half-Metallic Ferromagnetism Cr2NbZ (Z = As, Sb)

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Based on first principles calculation, a systematical investigation has been performed to study the structural, electronic, mechanical and magnetic properties of the new Heusler alloys of Cr2NbZ (Z = As, Sb), using the full-potential linearized augmented plane wave (FP-LAPW) method with the Generalized Gradient Approximation (GGA) within the framework of density functional theory (DFT). It is found that the L21-type (AlCu2Mnl-type) structure is energetically more stable than the X-type (CuHg2Ti-type) structure due to the lower total energy. Moreover, several mechanical properties of Cr2NbAs and Cr2NbSb have been studied and its mechanical stability is also verified. The calculated electronic band structure reveals the metallic nature of Cr2NbZ (Z = As, Sb) and its total magnetic moment of 2µB is mainly contributed by Cr atom from strong spin splitting effect, as indicated with the distinctive distributions of the density of states in two spin directions. We have found that the spin polarization (SP) equals 100% for Cr2NbAs and Cr2NbSb, our materials has a half -metallic state. In addition the temperature and pressure effects on the bulk modulus, heat capacities, Debye temperature and entropy are computed and discussed in details. This theoretical study provides detailed information about the Cr2NbZ (Z = As, Sb) compounds from different aspects and can further lead some insight on the application of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. P. G. Van Engen, K. H. J. Bushow, R. Jongebreuer, and M. Erman, Appl. Phys. Lett. 42, 202 (1983). https://doi.org/10.1063/1.93849

    Article  CAS  Google Scholar 

  2. A. Prinz, Science 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  CAS  PubMed  Google Scholar 

  3. H. Wang, Z. Xie, Z. Zhou, Y. Zhang, and K. Zhu, Russ. J. Phys. Chem. B 15, 949 (2021). https://doi.org/10.1134/S1990793121060269

    Article  Google Scholar 

  4. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science 294, 1488 (2001). https://doi.org/10.1126/science.1065389

    Article  CAS  PubMed  Google Scholar 

  5. G. A. Prinz, Science 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  CAS  PubMed  Google Scholar 

  6. F. Yun Zhang, C. Liu, and F. Li Liu, Russ. J. Phys. Chem. B 15, 420 (2021). https://doi.org/10.1134/S1990793121030155

    Article  Google Scholar 

  7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019(2000). https://doi.org/10.1126/science.287.5455.1019

    Article  CAS  PubMed  Google Scholar 

  8. J. H. Park, E. Voscovo, H. J. Kim, et al., Nature 392, 794(1998). https://doi.org/10.1007/s11664-019-07482-2

    Article  CAS  Google Scholar 

  9. F. Heusler, Verh. Dtsch. Phys. Ges. 5, 219 (1903).

    CAS  Google Scholar 

  10. R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  CAS  Google Scholar 

  11. G. Y. Gao, L. Hu, K. L. Yao, B. Luo and N. Liu, J. Alloys Comp. 551, 539 (2013).

  12. Y. Han, Y. Wu, T. Li, R. Khenata, T. Yang, and X. Wang, Mater. 11, 797 (2018). https://doi.org/10.1021/jp909021r

    Article  CAS  Google Scholar 

  13. S. Wurmehl, G. H. Fecher, H. C. Kandpal, et al., Appl. Phys. Lett. 88, 032503 (2006). https://doi.org/10.1063/1.2166205

    Article  CAS  Google Scholar 

  14. T. Graf, C. Felser, and S. S. Parkin, Prog. Solid State. Chem. 39, 1(2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

    Article  CAS  Google Scholar 

  15. W. E. Pickett and J. S. Moodera, Phys. Today 54, 39 (2001). https://doi.org/10.1063/1.1381101

    Article  CAS  Google Scholar 

  16. T. V. Belysheva, E. Yu. Spiridonova, M. I. Ikim, G. N. Gerasimov, et al., Russ. J. Phys. Chem. B 14, 298 (2020). https://doi.org/10.1134/S1990793120020190

    Article  CAS  Google Scholar 

  17. C. S. Lue and Y.-K. Kuo, Phys. Rev. B 66, 085121 (2002). https://doi.org/10.1103/PhysRevB.66.085121

    Article  CAS  Google Scholar 

  18. J. Winterlik, G. H. Fecher, and C. Felser, Solid State Commun. 145, 475 (2008)

    Article  CAS  Google Scholar 

  19. M. Parsons, J. Grandle, B. Dennis, K. Neumann, and K. Ziebeck, J. Magn. Magn. Mater. 185, 140 (1995)

    Google Scholar 

  20. E. P. Wohlfarth, K. H. J. Buschow, Ferromagnetic Materials (Elsevier, Amsterdam, 1998), Vol. 4.

    Google Scholar 

  21. X. Dai, G. Liu, G. H. Fecher, et al., J. Appl. Phys. 105, 07E901 (2009). https://doi.org/10.1063/1.3062812

  22. I. Asfour, J. Supercond. Nov. Magn. 33, 2837 (2020). https://doi.org/10.1007/s10948-020-05519-w

    Article  CAS  Google Scholar 

  23. I. Asfour, Pramana–J. Phys. 94, 161 (2020). https://doi.org/10.1007/s12043-020-02021-9

    Article  CAS  Google Scholar 

  24. X. Miao, S. Zhou, and C. Wang, Russ. J. Phys. Chem. B 16, 804 (2022). https://doi.org/10.1134/S199079312204011X

    Article  CAS  Google Scholar 

  25. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  26. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  27. M. Petersen, F. Wagner, L. Hufnagel, et al., Comput. Phys. Commun. 126, 294 (2000).

    Article  CAS  Google Scholar 

  28. P. Blaha, K. Schwarz, G. Madsen, et al., User’s Guide, WIEN2k 12.1 (Vienna Univ. Technol., Vienna, 2012).

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  30. A. Kokalj, Comp. Mater. Sci. 28, 155 (2003). https://doi.org/10.1016/S0927-0256(03)00104-6

    Article  CAS  Google Scholar 

  31. F. D. Murnaghen, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  Google Scholar 

  32. M. J. Mehl, Phys. Rev. B 47, 2493 (1993). https://doi.org/10.1103/PhysRevB.47.2493

    Article  CAS  Google Scholar 

  33. F. Chu, Y. He, D. J. Thome, and T. E. Mitchell, Scr. Metall. Mater. 33, 1295 (1995)

    Article  CAS  Google Scholar 

  34. S. F. Pugh, Philos. Mag. J. Sci. 45, 823 (1954).

    Article  CAS  Google Scholar 

  35. R. J. Soulen, J. M. Byers, et al., Sci. 85, 282 (1998). https://doi.org/10.1126/science.282.5386.85

    Article  Google Scholar 

  36. S. Wurmehl, G. H. Fecher, H. C. Kandpal, et al., Phys. Rev. B 72, 184434 (2005). https://doi.org/10.1103/PhysRevB.72.184434

    Article  CAS  Google Scholar 

  37. A. Candan, G. Ugur, Z. Charifi, H. Baaziz, and M. R. Ellialtioglu, J. Alloy Compd. 560, 215 (2013).

    Article  CAS  Google Scholar 

  38. M. A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  CAS  Google Scholar 

  39. P. Debye, Ann. Phys. 39, 789 (1912).

    Article  CAS  Google Scholar 

  40. A. T. Petit and P. L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Asfour.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfour, I. Theoretical Study of the Structural Stability, Electronic and Magnetic Properties of Half-Metallic Ferromagnetism Cr2NbZ (Z = As, Sb). Russ. J. Phys. Chem. B 18, 83–94 (2024). https://doi.org/10.1134/S1990793124010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010032

Keywords:

Navigation