Skip to main content
Log in

Kinetic Modeling of the Effect of the Conditions of Conjugate Oxidation of Propane and Ethylene on the Yield of Propylene

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The study of the oxidation of propane-ethylene mixtures by numerical kinetic modeling allowed us to establish that in the range of 400–600°C with an increase in the conversion of propane with an increase in temperature, the selectivity of propylene formation passes through a maximum whose position depends on the concentration of ethylene in the initial mixture. The addition of ethylene to the initial mixture leads to a reduction in propane consumption and an increase in the selectivity of propylene formation. The conditions under which ethylene introduced into the initial mixture is not consumed during the process are determined; thus, formally it can be considered as a catalyst, and the process of propane oxidation as proceeding in a pseudo-catalytic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. H. J. Curran, Proc. Combust. Inst. 37, 57 (2019). https://doi.org/10.1016/j.proci.2018.06.054

    Article  CAS  Google Scholar 

  2. J. Zador, C. A. Taatjes, and R. X. Fernandes, Prog. Energy Combust. Sci. 37, 371 (2011). https://doi.org/10.1016/j.pecs.2010.06.006

    Article  CAS  Google Scholar 

  3. A. V. Arutyunov, K. Ya. Troshin, A. V. Nikitin, A. A. Belyaev, and V. S. Arutyunov, J. Phys.: Conf. Ser. 1141, 012153 (2018).

    Google Scholar 

  4. E. L. Petersen, D. M. Kalitan, S. Simmons, H. J. Curran, and J. M. Simmie, Proc. Combust. Inst. 31, 447 (2007). https://doi.org/10.1016/j.proci.2006.08.034

    Article  CAS  Google Scholar 

  5. A. Ramalingam, S. Panigrahy, Y. Fenard, H. Curran, and K. A. Heufer, Combust. Flame 223, 361 (2021). https://doi.org/10.1016/j.combustflame.2020.10.020

    Article  CAS  Google Scholar 

  6. Di He, Y. Yu, Y. Kuang, and C. Wang, Appl. Sci. 11, 4107 (2021). https://doi.org/10.3390/app11094107

    Article  CAS  Google Scholar 

  7. M. Sieradzka, P. Rajca, M. Zajemska, A. Mlonka-Medrala, and A. Magdziarz, J. Cleaner Prod. 248, 119277 (2020). https://doi.org/10.1016/j.jclepro.2019.119277

    Article  CAS  Google Scholar 

  8. S. Schuh, J. Frühhaber, T. Lauer, and F. Winter, Energies 12, 4396 (2019).https://doi.org/10.3390/en12224396

    Article  CAS  Google Scholar 

  9. The San Diego Mechanism. https://web.eng.ucsd. edu/mae/groups/combustion/mechanism.html.

  10. GRI-Mech 3.0. http://combustion.berkeley.edu/gri_mech/releases.html.

  11. AramcoMech 3.0. http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/.

  12. NUIGMech1.1. http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/.

  13. A. M. Starik, N. S. Titova, and L. S. Yanovskii, Kinet. Catal. 40, 7 (1999).

    CAS  Google Scholar 

  14. M. V. Petrova and F. A. Williams, Combust. Flame 144, 526 (2006). https://doi.org/10.1016/J.COMBUSTFLAME.2005.07.016

    Article  CAS  Google Scholar 

  15. A. A. Konnov, “Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons.” in 28th Symposium (Int.) on Combustion (Edinburgh, 2000), p. 317.

  16. D. N. Koert, W. J. Pitz, J. W. Bozzelli, and N. P. Cernansky, Proc. Combust. Inst. 26, 633 (1996). https://doi.org/10.1016/S0082-0784(96)80270-0

    Article  Google Scholar 

  17. P. Dagaut, M. Cathonnet, J.-C. Boettner. Int. J. Chem. Kinet. 24, 813 (1992). https://doi.org/10.1002/KIN.550240906

    Article  CAS  Google Scholar 

  18. S. D. Arsentev, L. A. Tavadyan, M. G. Bryukov, A. S. Palankoeva, A. A. Belyaev, and V. S. Arutyunov, Russ. J. Phys. Chem. B 16(6), 1019 (2022). https://doi.org/10.1134/S1990793122060021.

  19. A. H. Davtyan, Z. H. Manukyan, S. D. Arsentev, L. A. Tavadyan, and V. S. Arutyunov, Russ. J. Phys. Chem. B 17(2), 336 (2023). https://doi.org/10.1134/S1990793123020239

  20. A. S. Palankoeva, A. A. Belyaev, and V. S. Arutyunov, Russ. J. Phys. Chem. B 16, 399 (2022). https://doi.org/10.1134/S1990793122030204

    Article  CAS  Google Scholar 

  21. J. A. Piehl, A. Zyada, L. Bravo, and O. Samimi-Abianeh, J. Combust. 2018, 8406754 (2018). https://doi.org/10.1155/2018/8406754

    Article  CAS  Google Scholar 

  22. E. Hu, Z. Xu, Z. Gao, J. Xu, and Z.-H. Huang, Fuel 256, 115933 (2019). https://doi.org/10.1016/j.fuel.2019.115933

    Article  CAS  Google Scholar 

  23. D. Healy, D. M. Kalitan, C. J. Aul, E. L. Petersen, G. Bourque, and H. J. Curran, Energy and Fuels 24, 1521 (2010). https://doi.org/10.1021/ef9011005

    Article  CAS  Google Scholar 

  24. N. M. Poghosyan, M. D. Poghosyan, L. N. Strekova, L. A. Tavadyan, and V. S. Arutyunov, Russ. J. Phys. Chem. B 9, 218 (2015). https://doi.org/10.1134/S1990793115020104

    Article  CAS  Google Scholar 

  25. N. M. Poghosyan, M. D. Poghosyan, S. D. Arsentev, L. N. Strekova, L. A. Tavadyan, and V. S. Arutyunov, Russ. J. Phys. Chem. B 9, 231 (2015). https://doi.org/10.1134/S199079311502027X

    Article  CAS  Google Scholar 

  26. N. M. Poghosyan, M. D. Poghosyan, O. V. Shapovalova, A. V. Nikitin, L. N. Strekova, and V. S. Arutyunov, Combust. Explos. 9, 83 (2016).

    Google Scholar 

  27. N. M. Poghosyan, M. D. Poghosyan, S. D. Arsentev, L. N. Strekova, L. A. Tavadyan, and V. S. Arutyunov, Pet. Chem. 56, 834 (2016). https://doi.org/10.1134/S0965544116090176

    Article  CAS  Google Scholar 

  28. N. M. Poghosyan, M. Dj. Poghosyan, S. D. Arsentev, L. A. Tavadyan, L. N. Strekova, and V. S. Arutyunov, Pet. Chem. 60, 316 (2020). https://doi.org/10.1134/S0965544120030172

    Article  Google Scholar 

  29. N. M. Poghosyan, M. Dj. Poghosyan, O. V. Shapovalova, A. V. Nikitin, and V. S. Arutyunov, Russ. J. Phys. Chem. B 10, 907 (2016). https://doi.org/10.1134/S1990793116060075

    Article  CAS  Google Scholar 

  30. S. M. Aldoshin, V. S. Arutyunov, V. I. Savchenko, I. V. Sedov, A. V. Nikitin, and I. G. Fokin, Russ. J. Phys. Chem. B 15, 498 (2021). https://doi.org/10.1134/S1990793121030039

    Article  CAS  Google Scholar 

  31. ANSYS Academic Research CFD. License of Semenov Research Center of Chemical Physics. Customer ID 1080307.

  32. R. R. Grigoryan, S. D. Arsentev, and A. A. Mantashyan, Chem. Chem. Technol. YerSU, No. 2, 15 (1983).

    Google Scholar 

Download references

Funding

This study was financially supported as part of a joint scientific project of the Russian Foundation for Basic Research (project no. 20-53-05001) and the Science Committee of the Republic of Armenia (20RF-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Arsentev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsentev, S.D., Davtyan, A.H., Manukyan, Z.H. et al. Kinetic Modeling of the Effect of the Conditions of Conjugate Oxidation of Propane and Ethylene on the Yield of Propylene. Russ. J. Phys. Chem. B 18, 125–131 (2024). https://doi.org/10.1134/S1990793124010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010020

Keywords:

Navigation