Skip to main content
Log in

Phase Equilibria in the Nd3+–Water–Nitric Acid–TODGA–CO2 System and Efficiency of Supercritical Fluid Extraction of Neodymium Ions

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper studied some equilibria in the Nd3+–water–nitric acid–TODGA (N,N,N,N-tetraoctyl diglycolamide)–CO2 system and the efficiency of extraction of Nd3+ ions from aqueous solutions into the supercritical (SC) CO2 phase at 313–353 K and 18.0–40.0 MPa. It was shown that, in the absence of TODGA, Nd3+ ions do not pass into the SC phase. The extraction efficiency increases with decreasing temperature and with increasing nitric acid concentration CNA in the aqueous solution. At 313 K, CNA > 1.5 mol/L, TODGA content not less than 100 mol/g-at. Nd, and CO2pressure ensuring complete dissolution of TODGA (19.0 MPa), Nd3+ completely pass into the SC phase. With increasing content of neodymium ions in the system, the pressure and amount of CO2 required for complete dissolution of TODGA increase. This is likely to be due to a decrease in the intensity of intermolecular interactions in the SC phase during the passage of polar Nd complexes with TODGA and nitrate ions into it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. T. H. Siddall III, J. Phys. Chem. 64 (1), 863 (1960).

    Google Scholar 

  2. T. H. Siddall III and M. L. Good, J. Inorg. Nucl. Chem. 29, 149 (1967).

    Article  CAS  Google Scholar 

  3. G. M. Gasparini and G. Grossi, Sep. Sci. Technol. 15, 825 (1980).

    Article  CAS  Google Scholar 

  4. G. M. Gasparini and G. Grossi, Solv. Extr. Ion Exch. 4, 1233 (1986).

    Article  CAS  Google Scholar 

  5. N. Condamines and C. Musikas, Solv. Extr. Ion Exch. 10, 69 (1992).

    Article  CAS  Google Scholar 

  6. Y. Suzuki and G. R. Choppin, Anal. Sci. 12, 225 (1996).

    Article  Google Scholar 

  7. S. Tachimori, S. Suzuki, and Yu. Sasaki, J. At. Energy Soc. Jpn. 43 (12), 1235 (2001).

    Article  CAS  Google Scholar 

  8. Y. Sasaki, Y. Sugo, S. Suzuki, and S. Tachimori, Solv. Extr. Ion Exch. 19, 91 (2001).

    Article  CAS  Google Scholar 

  9. Y. Sasaki and S. Tachimori, Solv. Extr. Ion Exch. 20, 21 (2002).

    Article  CAS  Google Scholar 

  10. Yu. Sasaki, Zh.-X. Zhu, Yu. Sugo, and T. Kimura, J. Nucl. Sci. Technol. 44 (3), 405 (2007).

    Article  CAS  Google Scholar 

  11. B. T. Arko, D. Dan, S. L. Adelman, D. B. Kimball, S. A. Kozimor, M. Nhu Lam, V. Mocko, J. C. Shafer, B. W. Stein, and S. L. Thiemann, Ind. Eng. Chem. Res. 60 (39), 14282 (2021).

    Article  CAS  Google Scholar 

  12. V. Rychkov, V. Baulin, E. Kirillov, S. Kirillov, G. Bunkov, D. Smyshlyaev, M. Botalov, V. Semenishchev, A. Malyshev, A. Taukin, A. Yuldashbaeva, and E. Gaidashov, Hydrometallurgy 204, 105720 (2021).

    Article  CAS  Google Scholar 

  13. A. G. Yadav, T. P. Valsala, R. B. Bhatt, and P. K. Mohapatra, J. Chromatogr. A 1669, 462928 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. R. Flores, M. A. Momen, M. R. Healy, B. A. Moyer, and V. S. Bryantsev, Solv. Extr. Ion Exch. 40 (1–2), 6 (2022).

    Article  CAS  Google Scholar 

  15. S. A. Bhattacharyya, D. K. Kuma, and P. K. Mohapatra, Separation Science and Technology (Philadelphia) 54 (9), 1512 (2019).

    Article  CAS  Google Scholar 

  16. M. Khaydukova, D. Militsyn, M. Karnaukh, B. Grüner, P. Selucký, V. Babain, A. Wilden, D. Kirsanov, and A. Legin, Chemosensors 7 (3), 41 (2019).

    Article  CAS  Google Scholar 

  17. R. Kumar, S. A. Ansari, P. Kandwal, and P. K. Mohapatra, Applied Radiation and Isotopes 170, 109604 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. B. Mahanty, P. K. Verma, P. K. Mohapatra, A. Leoncini, J. Huskens, and W. Verboom, Radiochim. Acta 110 (4), 229 (2022).

    Article  CAS  Google Scholar 

  19. A. V. Legin, V. A. Babain, D. O. Kirsanov, and O. V. Mednova, Sensors and Actuators B: Chemical 131 (1), 29 (2008).

    Article  CAS  Google Scholar 

  20. B. Mahanty, A. K. Satpati, and P. K. Mohapatra, J. Electroanal. Chem. 808, 340 (2018).

    Article  CAS  Google Scholar 

  21. A. Zhang, E. Kuraoka, and M. Kumagai, Separat. Purif. Technol. 50 (1), 35 (2006).

    Article  CAS  Google Scholar 

  22. Y. Horiuchi, S. Watanabe, Y. Sano, M. Takeuchi, F. Kida, and T. Arai, J. Radioanal. Nucl. Chem. 330, 237 (2021).

    Article  CAS  Google Scholar 

  23. M. Kostenko and O. Parenago, Molecules 27 (1), 31 (2022).

    Article  CAS  Google Scholar 

  24. V. V. Milyutin, A. M. Fedoseev, V. P. Shilov, and N. A. Nekrasova, Radiochemistry 64 (2), 171 (2022).

    Article  CAS  Google Scholar 

  25. M. D. Samsonov, C. M. Wai, S. C. Lee, Y. M. Kulyako, and N. G. Smart, Chem. Commun., No. 18, 1868 (2001). https://doi.org/10.1039/B103468P

  26. T. I. Trofimov, M. D. Samsonov, S. C. Lee, B. F. Myasoedov, and C. M. Wai, Mendeleev Commun., No. 4, 129 (2001).

  27. M. D. Samsonov, T. I. Trofimov, S. E. Vinokurov, S. C. Lee, B. F. Myasoedov, and C. M. Wai, J. Nuclear Sci. Technol., Suppl. 3, 263 (2002).

    Google Scholar 

  28. Y. M. Kulyako, T. I. Trofimov, M. D. Samsonov, and B. F. Myasoedov, Radiochemistry 45, 503 (2003). https://doi.org/10.1023/A:1026272228330

    Article  CAS  Google Scholar 

  29. Y. M. Kulyako, T. I. Trofimov, M. D. Samsonov, and B. F. Myasoedov, Mendeleev Commun., No. 6, 15 (2003).

  30. A. Yu. Shadrin, D. N. Shafikov, V. A. Kamachev, A. Murzin, and D. Shafikov, ISSF 116, 264 (2009).

    Google Scholar 

  31. A. S. Kanekar, P. N. Pathak, and P. K. Mohapatra, Separation Science and Technology (Philadelphia) 50 (3), 471 (2015).

    Article  CAS  Google Scholar 

  32. V. A. Kamachev, A. Yu. Shadrin, A. A. Murzin, and D. N. Shafikov, Sverhkrit. Flyuidy: Teor. Prakt., No. 3, 48 (2007).

  33. A. Shadrin, V. Kamachev, A. Murzin, and D. Shafikov, J. Supercrit. Fluids 42, 347 (2007).

    Article  CAS  Google Scholar 

  34. V. A. Kamachev, V. A. Babain, R. N. Kiseleva, A. A. Murzin, I. V. Smirnov, A. Yu. Shadrin, S. I. Yakimovich, and I. V. Zerova, Radiochemistry 45, 602 (2003). https://doi.org/10.1023/B:RACH.0000015759.79741.b7

    Article  Google Scholar 

  35. V. A. Kamachev, Abstract of Candidate’s Dissertation in Engineering (Khlopin Radium Institute, St. Petersburg, 2017).

  36. M. O. Kostenko, O. O. Parenago, M. Y. Sinev, Ya. I. Zuev, and A. E. Lazhko, Sverhkrit. Flyuidy: Teor. Prakt., No. 3, 60 (2022). https://doi.org/10.34984/SCFTP.2022.17.3.007

  37. J. Chen, S. Wang, and X. Wang, Proc. Int. Conf. Global’2003, New Orleans, LA (2003), Vol. 2, p. 1915.

  38. L. Nigond, C. Musikas, and C. Cuillerdier, Solvent Extraction and Ion Exchange 12, 297 (1994).

    Article  CAS  Google Scholar 

  39. V. V. Milutin, N. A. Nekrasova, and A. A. Bessonov, Radiochemistry. 63 (1), 37 (2021). https://doi.org/10.31857/S0033831121010068

    Article  Google Scholar 

  40. Z.-X. Zhu, Y. Sasaki, H. Suzuki, S. Suzuki, and T. Kimura, Anal. Chim. Acta 527 (2), 163 (2004).

    Article  CAS  Google Scholar 

  41. NIST Chemistry WebBook, SR.

Download references

ACKNOWLEDGMENTS

Studies of samples by inductively coupled plasma atomic emission spectrometry were carried out using the equipment of the Center for Shared Use of Physical Methods for the Study of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Zuev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, Y.I., Kostenko, M.O., Sinev, M.Y. et al. Phase Equilibria in the Nd3+–Water–Nitric Acid–TODGA–CO2 System and Efficiency of Supercritical Fluid Extraction of Neodymium Ions. Russ. J. Phys. Chem. B 17, 1665–1674 (2023). https://doi.org/10.1134/S1990793123080110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123080110

Keywords:

Navigation