Skip to main content
Log in

Supercritical Antisolvent Precipitation of Levofloxacin Hydrochloride from a Single-Phase and a Two-Phase CO2–Dimethylformamide Mixture

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of pressure on the size and morphology of particles of levofloxacin hydrochloride precipitated by supercritical antisolvent precipitation was studied. It was shown that crystallization of levofloxacin from the two-phase system CO2–dimethylformamide–levofloxacin hydrochloride gives particles with a bimodal size distribution. Crystallization from a single-phase system is accompanied by a change in the mechanism of mixing of CO2 and solution and, as a consequence, yields particles with a unimodal size distribution. For the first time, liquid–gas equilibrium curves for the CO2–dimethylformamide– levofloxacin hydrochloride system at a temperature of 40°C were constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. P. Franco and I. De Marco, Processes 8, 938 (2020).

    Article  CAS  Google Scholar 

  2. G. Liu, J. Li, and S. Deng, Pharmaceutics 13 (4), 475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. E. V. Kudryashova, I. M. Deygen, K. V. Sukhoverkov, L. Y. Filatova, N. L. Klyachko, A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, E. N. Antonov, A. G. Dunaev, L. I. Krotova, V. K. Popov, and A. M. Egorov, Russ. J. Phys. Chem. B 10 (8), 1201 (2016).

    Article  CAS  Google Scholar 

  4. N. S. Nesterov, A. S. Shalygin, V. P. Pakharukova, T. S. Glazneva, and O. N. Martyanov, J. Supercrit. Fluids 149, 110 (2019).

    Article  CAS  Google Scholar 

  5. A. V. Gavrikov, A. S. Loktev, A. Ilyukhin, I. E. Mukhin, M. A. Bykov, K. I. Maslakov, A. M. Vorobei, O. O. Parenago, A. Sadovnikov, and A. G. Dedov, Dalton Trans 51, 18446 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. A. V. Gavrikov, A. S. Loktev, A. B. Ilyukhin, I. E. Mukhin, M. A. Bykov, A. M. Vorobei, O. O. Parenago, K. A. Cherednichenko, A. A. Sadovnikov, and A. G. Dedov, Int. J. Hydrogen Energy 48, 2998 (2022).

    Article  Google Scholar 

  7. P. Franco, O. Sacco, I. De Marco, and V. Vaiano, Catalysts 9 (4), 346 (2019).

    Article  Google Scholar 

  8. A. A. Philippov, N. N. Nesterov, V. P. Pakharukova, and O. N. Martyanov, Appl. Catal. A: Gen. 643, 118792 (2022).

    Article  CAS  Google Scholar 

  9. Ya. I. Zuev, A. M. Vorobei, and O. O. Parenago, Russ. J. Phys. Chem. B 15 (7), 1107 (2021).

    Article  CAS  Google Scholar 

  10. A. M. Vorobei, K. B. Ustinovich, S. A. Chernyak, S. V. Savilov, O. O. Parenago, and M. G. Kiselev, Materials 14 (23), 7428 (2021).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  11. O. S. Dobrynin, M. N. Zharkov, I. V. Kuchurov, I. V. Fomenkov, S. G. Zlotin, K. A. Monogarov, D. B. Meerov, A. N. Pivkina, and N. V. Muravyev, Nanomaterials 9 (10), 1386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. M. Pourmortazavi and S. S. Hajimirsadeghi, Ind. Eng. Chem. Res. 44 (17), 6523 (2005).

    Article  CAS  Google Scholar 

  13. A. M. Vorobei and O. O. Parenago, Russ. J. Phys. Chem. A 95 (3), 407 (2021).

    Article  CAS  Google Scholar 

  14. E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, et al., Russ. Chem. Rev. 89 (12), 1337 (2020).

    Article  CAS  ADS  Google Scholar 

  15. N. Esfandiari, J. Supercritical Fluids 100, 129 (2015).

  16. E. Reverchon and I. De Marco, Chem. Eng. J. 169 (1), 358 (2011).

    Article  CAS  Google Scholar 

  17. E. Reverchon, G. Caputo, and I. De Marco, Ind. Eng. Chem. Res. 42, 25, 6406 (2003).

    Article  CAS  Google Scholar 

  18. E. Reverchon, R. Adami, G. Caputo, and I. De Marco, J. Supercrit. Fluids 47 (1), 70 (2008).

    Article  CAS  Google Scholar 

  19. E. Reverchon, I. De Marco, and E. Torino, J. Supercrit. Fluids 43 (1), 126 (2007).

    Article  CAS  Google Scholar 

  20. E. Reverchon, I. De Marco, R. Adami, and G. Caputo, J. Supercrit. Fluids 44 (1), 98 (2008).

    Article  CAS  Google Scholar 

  21. A. M. Vorobei, A. G. Fedorovskiy, M. O. Kostenko, Y. I. Zuev, and O. O. Parenago, Russ. J. Phys. Chem. B 16 (8), 1416 (2022).

    Article  CAS  Google Scholar 

  22. A. M. Vorobei, M. O. Kostenko, and O. O. Parenago, Materials 16 (18), 6151 (2023).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  23. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, V. V. Lunin, and A. G. Miroshnichenko, Russ. J. Phys. Chem. B. 12 (8), 1240 (2018).

    Article  CAS  Google Scholar 

  24. S. Chanfreau, P. Cognet, S. Camy, and J.-S. Condoret, J. Electroanal. Chem. 604 (1), 33 (2007).

    Article  CAS  Google Scholar 

  25. R. Campardelli, E. Reverchon, and I. De Marco, J. Supercrit. Fluids 130, 273 (2017).

    Article  CAS  Google Scholar 

  26. K. K. Il’in, D. G. Cherkasov, and V. F. Kurskii, Russ. J. Phys. Chem. A 85, 68 (2011).

    Article  Google Scholar 

  27. Y. I. Zuev, A. M. Vorobei, A. V. Gavrikov, and O. O. Parenago, Russ. J. Phys. Chem. B 16 (7), 1242 (2022).

    Article  CAS  Google Scholar 

  28. A. M. Vorobei, Ya. I. Zuev, A. V. Gavrikov, and O. O. Parenago, Russ. J. Phys. Chem. B 17 (7), 1465 (2023).

Download references

ACKNOWLEDGMENTS

The studies of samples by scanning electron microscopy and X-ray powder diffraction analysis were carried out using the equipment of the Center for Shared Use of Physical Methods for the Study of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Russian Science Foundation (grant no. 22-23-00566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vorobei.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobei, A.M., Rubtsov, Y.P., Zuev, Y.I. et al. Supercritical Antisolvent Precipitation of Levofloxacin Hydrochloride from a Single-Phase and a Two-Phase CO2–Dimethylformamide Mixture. Russ. J. Phys. Chem. B 17, 1657–1664 (2023). https://doi.org/10.1134/S1990793123080109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123080109

Keywords:

Navigation