Skip to main content
Log in

Structural Features of Lanthanum Aluminum Mixed Oxides and Stability of Their Catalytic Properties in Oxidative Coupling of Methane

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The catalytic properties in the oxidative coupling of methane (OCM) and the structural features of a series of lanthanum aluminum mixed oxides with a constant La : Al atomic ratio of 1 : 1 were studied. Samples were prepared from precursors containing lanthanum and aluminum nitrates and an organic component: filter paper or starch. After drying and burning of the organic component, the samples were subjected to additional heat treatment and treatment with water fluid (WF) with a density of 0.2 g/cm3 at 415°C. After calcination at 900°C, all the samples contained a phase of lanthanum aluminate LaAlO3 with a cubic perovskite structure. Varying the type of organic component and the sequence of procedures and treatment conditions gave samples with different morphologies and catalytic properties. The minimum activity, selectivity for OCM products, and stability over time was demonstrated by the sample obtained under conditions conducive to the formation of the most ordered structure, namely, the sample sequentially calcined at 900°C, treated in a WF medium, and recalcined at 900°C. The most efficient and stable sample turned out to be the one whose crystal structure was formed mainly in the WF medium. It was noted that there is no correlation between the morphology of the particles and the specific surface area of the samples, on the one hand, and their catalytic properties, on the other. It was assumed that the catalytic properties are determined by the type and number of point defects in the crystal structure—primarily cation vacancies and, as a consequence, hole sites of the [O] type in the anion sublattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Ya. Rozovskii, Catalyst and Reaction Medium (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. US Patent 4205194, 1980.

  3. T. Fang and C. Yeh, J. Catal. 69 (2), 227 (1981).

    Article  CAS  Google Scholar 

  4. G. E. Keller and M. M. Bhasin, J. Catal. 73 (1), 9 (1982).

    Article  CAS  Google Scholar 

  5. I. W. Hinsen, W. Bytyn, and M. Baerns, 8th Int. Congress on Catalysis Proc. (Verlag Chemie, Berlin, 1984), Vol. 3, p. 581.

  6. T. Ito and J. H. Lunsford, Nature 314 (6013), 721 (1985).

    Article  CAS  ADS  Google Scholar 

  7. X. P. Fang, S. B. Li, J. Z. Lin, and Y. L. Chu, J. Molec. Catal. (China) 6, 255 (1992).

    CAS  Google Scholar 

  8. X. P. Fang, S. B. Li, J. Z. Lin, and Y. L. Chu, J. Molec. Catal. (China) 6, 427 (1992).

    CAS  Google Scholar 

  9. D. Kiani, S. Sourav, J. Baltrusaitis, and I. E. Wachs, ACS Catalysis 9 (7), 5912 (2019).

    Article  CAS  Google Scholar 

  10. H. Liu, X. Wang, D. Yang, R. Gao, Zh. Wang, and J. Yang, J. Nat. Gas Chem. 17, 59 (2008).

    Article  Google Scholar 

  11. C. Uzunoglu, A. Leba, and R. Yildirim, Appl. Catal. A: Gen. 547, 22 (2017).

    Article  CAS  Google Scholar 

  12. D. Matras, A. Vamvakeros, S. Jacques, N. Grosjean, B. Rollins, S. Poulston, G. B. G. Stenning, H. Godini, J. Drnec, R. J. Cernik, and A. M. Beale, Faraday Discuss. 229, 176 (2021).

    Article  CAS  ADS  PubMed  Google Scholar 

  13. S. Pak, P. Qiu, and J. H. Lunsford, J. Catal. 179, 222 (1988).

    Article  Google Scholar 

  14. A. Aseem, G. G. Jeba, M. T. Conato, J. D. Rimer, and M. P. Harold, Chem. Eng. J. 331, 132 (2018).

    Article  CAS  Google Scholar 

  15. Y. Th. Chua, A. R. Mohamed, and S. Bhatia, Appl. Catal. A: Gen. 343, 142 (2008).

    Article  CAS  Google Scholar 

  16. V. R. Choudhary, A. M. Rajput, D. B. Akolekar, V. A. Seleznev, Appl. Catal. 62, 171 (1990).

    Article  CAS  Google Scholar 

  17. T. W. Elkins, B. Neumann, M. Baumer, and H. E. Hagelin-Weaver, ACS Catal. 4, 1972 (2014).

    Article  CAS  Google Scholar 

  18. E. A. R. Assirey, Saudi Pharm. J. 27, 817 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. V. Ivanov, L. A. Isupova, E. Yu. Gerasimov, L. S. Dovlitova, T. S. Glazneva, and I. P. Prosvirin, Appl. Catal. A: Gen. 485, 10 (2014).

    Article  CAS  Google Scholar 

  20. Yu. A. Ivaniova, R. V. Petrov, S. I. Reshetnikov, and L. A. Isupova, Tomsk State Univ. J. Chem., No. 8, 38 (2017).

  21. Y. Wang, X. Yang, Ch. Hou, F. Yin, G. Wang, X. Zhu, G. Jiang, and Ch. Li, ChemCatChem 13 (19), 4182 (2021).

    Article  CAS  Google Scholar 

  22. H. Imai, T. Tagawa, and N. Kamide, J. Catal. 106, 394 (1987).

    Article  CAS  Google Scholar 

  23. R. Spinicci, P. Marini, S. De Rossi, M. Faticanti, and P. Porta, J. Mol. Catal. A: Chem. 176, 253 (2001).

    Article  CAS  Google Scholar 

  24. Y. Sim, J. Yo, J.-M. Ha, and C. J. Jung, J. Energy Chem. 351, 8 (2019).

    Google Scholar 

  25. P. R. Vasyutin, M. Yu. Sinev, Yu. D. Ivakin, Yu. A. Gordienko, E. A. Lagunova, Sverkhkrit. Flyuidy: Teor. Prakt. 18 (2), 87 (2023). https://doi.org/10.34984/SCFTP.2023.18.2.006

    Article  Google Scholar 

  26. A. N. Shigapov, G. W. Graham, R. W. McCabe, and H. K. Plummer Jr., Appl. Catal. A: Gen. 210, 287 (2001).

    Article  CAS  Google Scholar 

  27. A. N. Shigapov, H.-W. Jen, G. W. Graham, W. Chun, and R. W. McCabe, Stud. Surf. Sci. Catal. 130, 1373 (2000).

    Article  Google Scholar 

  28. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Chernyak, A. V. Levanov, N. E. Strokova, and V.V. Lunin, Russ. J. Phys. Chem. A 90, 2157 (2016).

    Article  CAS  Google Scholar 

  29. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, N. E. Strokova, S. A. Chernyak, and V. V. Lunin, RSC Adv. 7, 51359 (2017).

  30. V. V. Shishova, K. I. Maslakov, A. V. Fionov, O. Ya. Isaikina, and V. V. Lunin, Appl. Surf. Sci. 485, 432 (2019).

    Article  ADS  Google Scholar 

  31. Yu. I. Kaplin, E. S. Lokteva, E. V. Golubina, and V. V. Lunin, Molecules 25, 4242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. I. Yu. Kaplin, E. S. Lokteva, A. V. Tikhonov, K. A. Zhilyaev, E. V. Golubina, K. I. Maslakov, A. O. Kamaev, and O. Ya. Isaikina, Top. Catal. 63, 86 (2020).

    Article  CAS  Google Scholar 

  33. I. Yu. Kaplin, E. S. Lokteva, A. V. Tikhonov, K. I. Maslakov, O. Ya. Isaikina, and E. V. Golubina, Catalysts 12, 1575 (2022).

    Article  CAS  Google Scholar 

  34. E. V. Golubina, I. Yu. Kaplin, A. V. Gorodnova, E. S. Lokteva, O. Ya. Isaikina, and K. I. Maslakov, Molecules 27, 6095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I. Yu. Kaplin, E. S. Lokteva, K. I. Maslakov, A. V. Tikhonov, A. N. Kharlanov, A. V. Fionov, A. O. Kamaev, O. Ya. Isaikina, S. V. Maksimov, and E. V. Golubina, Appl. Surf. Sci. 594, 153473 (2022).

    Article  CAS  Google Scholar 

  36. M. Yu. Sinev, E. A. Ponomareva, I.M. Sinev, V. I. Lomonosov, Yu. A. Gordienko, Z. T. Fattakhova, and D. P. Shashkin, Catal. Today 33, 36 (2019).

    Article  Google Scholar 

  37. V. I. Lomonosov, Yu. A. Gordienko, M. Yu. Sinev, V. A. Rogov, and V. A. Sadykov, Russ. J. Phys. Chem. A 92 (3), 430 (2018).

    Article  CAS  Google Scholar 

  38. E. A. Lagunova, Yu. D. Ivakin, M. Yu. Sinev, D. P. Shashkin, Z. T. Fattakhova, and Yu. A. Gordienko, J. Phys. Chem. B 14, 1163 (2020).

    CAS  Google Scholar 

  39. T. Le Van, M. Che, J. M. Tatibouët, M. Kermarec, J. Catal. 142, 18 (1993).

    Article  CAS  Google Scholar 

  40. T. Le Van, M. Che, M. Kermarec, C. Louis, J. M. Tatibouët, J. Catal. 6, 95 (1990).

    Google Scholar 

  41. R. P. Taylor and G. L. Schrader, Ind. Eng. Chem. Res. 30, 1016 (1991).

    Article  CAS  Google Scholar 

  42. D. J. Driscoll, W. Martir, J.-X. Wang, J. H. Lunsford, J. Am. Chem. Soc. 107, 58 (1985).

    Article  CAS  Google Scholar 

  43. D. J. Driscoll and J. H. Lunsford, J. Phys. Chem. 89, 4415 (1985).

    Article  CAS  Google Scholar 

  44. V. I. Lomonosov and M. Yu. Sinev, Kinet. Catal. 57, 647 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 2313-00360, https://rscf.ru/project/23-13-00360/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Sinev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasyutin, P.R., Sinev, M.Y., Lagunova, E.A. et al. Structural Features of Lanthanum Aluminum Mixed Oxides and Stability of Their Catalytic Properties in Oxidative Coupling of Methane. Russ. J. Phys. Chem. B 17, 1646–1656 (2023). https://doi.org/10.1134/S1990793123080092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123080092

Keywords:

Navigation