Skip to main content
Log in

Some Methodological Aspects of Modeling Solid Phase–Supercritical Fluid Equilibria

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Thermodynamic modeling of the solubility of pharmaceuticals in supercritical fluids is necessary to optimize processes of extraction, purification, micronization, etc. By the example of the ternary systems CO2–ethanol–acetylsalicylic acid (ASA) and CO2–dimethyl sulfoxide (DMSO)–salbutamol sulfate, the work showed that such modeling can be made using simplified models based on the Peng–Robinson cubic equation of state. This equation was used to describe phase equilibria in the CO2–ethanol binary system at p = 0.1–12 MPa and T = 290–345 K, and the CO2–DMSO binary system at p = 0.5–18 MPa and T = 275–50 K. In the case of the ternary systems, data on the solubility of pharmaceuticals in mixed solvents were successfully approximated. ASA was characterized using the available experimental data at p = 7.5–35 MPa, T = 298–328 K, and x(C2H5OH) = 0 and 3 mol %. The solubility of salbutamol sulfate in a mixture of CO2 and DMSO was measured visually in a thermostated cell of constant volume at p = 8.6–21.7 MPa and T = 313–323 K. Although the constructed models describe phase equilibria, they do not agree with fluid density data, especially for the compositions rich in polar components. However, this does not prevent the cubic equations of state from using to describe the solubility of pharmaceuticals in fluid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Notes

  1. Hereinafter, all figures are in the color insert.

REFERENCES

  1. U. R. Kattner, Technol. Metal. Mater. Min. 13 (1), 3 (2016). https://doi.org/10.4322/2176-1523.1059

    Article  CAS  Google Scholar 

  2. K. Thomsen, M.C. Iliuta, and P. Rasmussen, Chem. Eng. Sci. 59, 3631 (2004). https://doi.org/10.1016/j.ces.2004.05.024

    Article  CAS  Google Scholar 

  3. Pharmacopea RF, General Pharmacopoeial Article. OFS.1.1.0008.15.

  4. H. I. Chen, H. Y. Chang, E. T. S. Huang, and T. C. Huang, Ind. Eng. Chem. Res. 39 (12), 4849 (2000). https://doi.org/10.1021/ie000099i

    Article  CAS  Google Scholar 

  5. H.-Y. Chiu, M.-J. Lee, and H.-M. Lin, J. Chem. Eng. Data 53 (10), 2393 (2008). https://doi.org/10.1021/je800371a

    Article  CAS  Google Scholar 

  6. A. Vega Gonzalez, R. Tufeu, and P. Subra, J. Chem. Eng. Data 47 (3), 492 (2002). https://doi.org/10.1021/je010202q

    Article  CAS  Google Scholar 

  7. S. N. Joung, C. W. Yoo, H. Y. Shin, S. Y. Kim, K. P. Yoo, C. S. Lee, and W. S. Huh, Fluid Phase Equilib. 185 (1–2), 219 (2001). https://doi.org/10.1016/S0378-3812%2801%2900472-1

    Article  CAS  Google Scholar 

  8. M. Kariznovi, H. Nourozieh, and J. Abedi, J. Chem. Thermodyn. 57, 408 (2013). https://doi.org/10.1016/j.jct.2012.10.002

    Article  CAS  Google Scholar 

  9. A. Kordikowski, A.P. Schenk, R.M. Van Nielen, and C.J. Peters, J. Supercrit. Fluids 8 (3), 205 (1995). https://doi.org/10.1016/0896-8446(95)90033-0

    Article  CAS  Google Scholar 

  10. J. S. Lim, Y. Y. Lee, and H. S. Chun, J. Supercrit. Fluids 7 (4), 219 (1994). https://doi.org/10.1016/0896-8446(94)90009-4

    Article  CAS  ADS  Google Scholar 

  11. A. Mehl, F. P. Nascimento, P. W. Falcao, F. L. P. Pessoa, and L. Cardozo-Filho, J. Thermodyn. 2011, 251075 (2011) https://doi.org/10.1155/2011/251075

    Article  CAS  Google Scholar 

  12. A. Z. Panagiotopoulos and R. C. Reid, ACS Symposium Series. 1987. P. 115. https://doi.org/10.1021/bk-1987-0329.ch010

  13. M. Stievano and N. J. Elvassore, Supercrit. Fluids 33 (1), 7 (2005). https://doi.org/10.1016/j.supflu.2004.04.003

    Article  CAS  Google Scholar 

  14. K. Suzuki, H. Sue, M. Itou, R.L. Smith, H. Inomata, K. Arai, and S. Saito, J. Chem. Eng. Data 35 (1), 63 (1990). https://doi.org/10.1021/je00059a020

    Article  CAS  Google Scholar 

  15. A. E. Andreatta, L. J. Florusse, S. B. Bottini, and C. J. Peters, J. Supercrit. Fluids 42 (1), 60 (2007). https://doi.org/10.1016/j.supflu.2006.12.015

    Article  CAS  Google Scholar 

  16. J. M. O. Bacicheti, J. A. Oliveira, T. V. Barros, L. Ferreira-Pinto, P. F. A. Castillo, V. F. Cabral, and L. Cardozo-Filho, J. Solution Chem. 51, 1292 (2022). https://doi.org/10.1007/s10953-022-01196-6

    Article  CAS  Google Scholar 

  17. B. Calvignac, E. Rodier, J.-J. Letourneau, and J. Fages, Int. J. Chem. React. Eng. 7 (1), A46 (2009). https://doi.org/10.2202/1542-6580.2095

    Article  Google Scholar 

  18. H. Y. Chiu, R. F. Jung, M. J. Lee, and H. M. Lin, J. Supercrit. Fluids 44 (3), 273 (2008). https://doi.org/10.1016/j.supflu.2007.09.026

    Article  CAS  Google Scholar 

  19. M. P. Dirauf, M. Conrad, and A. S. Braeuer, Fluid Phase Equilib. 549 (113201), 2021. https://doi.org/10.1016/j.fluid.2021.113201

  20. R. Rajasingam, L. Lioe, Q. T. Pham, and F. P. Lucien, J. Supercrit. Fluids 31 (3), 227 (2004). https://doi.org/10.1016/j.supflu.2003.12.003

    Article  CAS  Google Scholar 

  21. R. Bettini, A. Rossi, E. Lavezzini, E. Frigo, I. Pasquali, and F. Giordano, J. Therm. Anal. Calorim. 73, 487 (2003). https://doi.org/10.1023/A:1025417810761

    Article  CAS  Google Scholar 

  22. M. Champeau, J.-M. Thomassin, C. Jerome, and T. Tassaing, J. Chem. Eng. Data 61 (2), 968 (2016). https://doi.org/10.1021/acs.jced.5b00812

    Article  CAS  Google Scholar 

  23. Z. Huang, W. D. Lu, S. Kawi, and Y. C. Chiew, J. Chem. Eng. Data. 49 (5), 1323 (2004). https://doi.org/10.1021/je0499465

    Article  CAS  Google Scholar 

  24. H. Behjati Rad, J. Karimi Sabet, and F. Varaminian, Chem. Eng. Technol. 42 (6), 1259 (2019). https://doi.org/10.1002/ceat.201900043

    Article  CAS  Google Scholar 

  25. S. Ravipaty, K. Koebke, and D. Chesney, J. Chem. Eng. Data 53 (2), 415 (2008). https://doi.org/10.1021/je700486g

    Article  CAS  Google Scholar 

  26. Z. Huang, Y.C. Chiew, W.-D. Lu, and S. Kawi, Fluid Phase Equilib. 237 (1–2), 9–15 (2005). https://doi.org/10.1016/j.fluid.2005.08.004

    Article  CAS  Google Scholar 

  27. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, and V. V. Lunin, J. Mol. Liq. 280, 212 (2019). https://doi.org/10.1016/j.molliq.2019.02.056

    Article  CAS  Google Scholar 

  28. Z. Huang, Y.C. Chiew, M. Feng, H. Miao, J.-J. Li, and L. Xu, J. Supercrit. Fluids. 43 (2), 259 (2007). https://doi.org/10.1016/j.supflu.2007.05.011

    Article  CAS  Google Scholar 

  29. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15 (1), 59 (1976). https://doi.org/10.1021/i160057a011

    Article  CAS  Google Scholar 

  30. A. Bond, R. Boese, and G. Desiraju, Angew. Chem., Int. Ed. 46 (4), 615 (2007). https://doi.org/10.1002/anie.200602378

    Article  CAS  Google Scholar 

  31. J. A. Kaduk, C. E. Crowder, K. Zhong, T. G. Fawcett, and M. R. Suchomel, Powder Diffr. 26 (2), 202 (2014). https://doi.org/10.1017/S0885715614000232

    Article  CAS  ADS  Google Scholar 

  32. J.M. Leger, M. Goursolle, M. Gadret, and A. Carpy, Acta Cryst. B 34 (4), 1203 (1978). https://doi.org/10.1107/S056774087800521X

    Article  Google Scholar 

  33. G. L. Perlovich, S. V. Kurkov, A. N. Kinchin, and A. Bauer-Brandl, AAPS J. 6, 3 (2004). https://doi.org/10.1208/ps060103

    Article  Google Scholar 

  34. J. O. Valderrama and P. A. Robles, Ind. Eng. Chem. Res. 46 (4), 1338 (2007). https://doi.org/10.1021/ie0603058

    Article  CAS  Google Scholar 

  35. J. O. Valderrama, W. W. Sanga, and J. A. Lazzus, Ind. Eng. Chem. Res. 47 (4), 1318 (2008). https://doi.org/10.1021/ie071055d

    Article  CAS  Google Scholar 

  36. D. Ambrose and J. Walton, Pure Appl. Chem. 61 (8), 1395 (1989). https://doi.org/10.1351/pac198961081395

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the framework of the project “Chemical Thermodynamics and Theoretical Materials Science” (no. 121031300039-1).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Voskov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskov, A.L., Demchenko, A.M., Ivanov, A.S. et al. Some Methodological Aspects of Modeling Solid Phase–Supercritical Fluid Equilibria. Russ. J. Phys. Chem. B 17, 1603–1618 (2023). https://doi.org/10.1134/S1990793123080055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123080055

Keywords:

Navigation