Skip to main content
Log in

Synthesis of Mixed La–Al Oxides by Treatment in a Water Fluid Medium and Their Catalytic Properties in Methane Oxidation

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The synthesis of mixed La–Al oxide systems with the atomic ratio La : Al = 1 : 1 was studied. At the first stage, a dried mass containing starch and La and Al nitrates was burned. Heat treatment of the resulting amorphous product at a temperature of ≥700°C gave LaAlO3 aluminate with a cubic perovskite structure. The composition and morphology of the product formed by subsequent treatment in a water fluid (WF) medium (density 0.2 g/cm3, 415°C) depend on the degree of ordering of the precursor. Crystalline LaAlO3 (cubic) in the WF medium undergoes additional ordering with a decrease in the specific surface area (Ssp) while maintaining the crystalline structure; further calcination at 900°C did not lead to a change in either Ssp or the structure. Treatment of an amorphous precursor in the WF medium increased Ssp and produced a mixture of LaAlO3 aluminates of cubic and orthorhombic structures and La and Al hydroxides. Further calcination at 900°C gave a mixture of LaAlO3 (cubic), La2O3 (hexagonal), and, possibly, X-ray amorphous Al2O3. The synthesized systems were studied as catalysts for methane oxidation. There was no correlation between activity and selectivity for oxidative coupling products (ethane + ethylene) with the Ssp value; they were found to depend on the phase composition of the mixed La–Al oxide. The most efficient systems turned out to be those that underwent intermediate treatment in the WF medium and contained the LaAlO3 (cubic) and La2O3 (hexagonal) phases. The results obtained indicate the high structural sensitivity of the process characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. R. Spinicci, P. Marini, S. De Rossi, M. Faticanti, and P. Porta, J. Mol. Catal. A: Chem. 176, 253 (2001).

    Article  CAS  Google Scholar 

  2. Y. Sim, D. Kwon, S. An, J.-M. Ha, T.-S. Oh, and J. C. Jung, Mol. Catal. 489, 110925 (2020).

    Article  CAS  Google Scholar 

  3. G. Lee, I. Kim, I. Yang, J.-M. Ha, H. Bin Na, and J. C. Jung, Appl. Surf. Sci. 429, 55 (2018).

    ADS  Google Scholar 

  4. Y. Sim, J. Yo, J.-M. Ha, and J. C. Jung, J. Energy Chem. 35, 1 (2019).

    Article  ADS  Google Scholar 

  5. Y. Sim, I. Yang, D. Kwon, J.-M. Ha, and J. C. Jung, Catal. Today 352, 134 (2020).

    Article  Google Scholar 

  6. R.C. Schucker, K. Derrickson, A.K. Ali, and N. Caton, Ind. Eng. Chem. Res. 59, 18434 (2020).

    Article  CAS  Google Scholar 

  7. I. Kim, G. Lee, H.B. Na, J.-M. Ha, and J.C. Jung, Mol. Catal. 435, 13 (2017).

    Article  CAS  Google Scholar 

  8. S. Lim, J.-W. Choi, D.J. Suh, U. Lee, K.H. Song, and J.-M. Ha, Catal. Today 352, 127 (2019).

    Article  Google Scholar 

  9. A. Sato, S. Ogo, Yu. Takeno, K. Takise, J.G. Seo, and Y. Sekine, ACS Omega 4, 10438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Industrial Catalysis in Lectures, Ed. by A. S. Noskov (Kalvis Press, Moscow, 2005), Iss. 1 [in Russian].

  11. Yu. A. Ivanova, R. V. Petrov, S. I. Reshetnikov, and L. A. Isupova, Vestn. Tomsk. Gos. Univ. Khim., No. 8, 38 (2017).

  12. E. Reverchon, G. Della Porta, D. Sannino, L. Lisi, and P. Ciambelli, Stud. Surf. Sci. Catal. 118, 349 (1998).

    Article  CAS  Google Scholar 

  13. A. A. Galkin and V. V. Lunin, Usp. Khim. 74 (1), 24 (2005).

    Article  Google Scholar 

  14. G. J. Hutchings, J. K. Bartley, J. M. Webster, J. A. Lopez-Sanchez, D. J. Gilbert, Ch. J. Kiely, A. F. Carley, S. M. Howdle, P. S. Saji, S. Caldarelli, C. Rhodes, J. C. Volta, and M. Poliakoff, J. Catal. 197 (2), 232 (2001).

    Article  CAS  Google Scholar 

  15. R. Noyori, Chem. Commun. 14, 1807 (2005).

    Article  Google Scholar 

  16. Z.-R. Tang, C. D. Jones, J. K. W. Aldridge, T. E. Davies, J. K. Bartley, A. F. Carley, S. H. Taylor, M. Allix, C. Dickinson, M. J. Rosseinsky, J. B. Claridge, Z. Xu, M. J. Crudace, and G. J. Hutchings, ChemCatChem. 1, 247 (2009).

    Article  CAS  Google Scholar 

  17. R. P. Marin, S. Ishikawa, H. Bahruji, G. Shaw, S. A. Kondrat, P. J. Miedziak, D. J. Morgan, S. H. Taylor, J. K. Bartley, J. K. Edwards, M. Bowker, W. Ueda, and G. J. Hutchings, Appl. Catal. A: Gen. 504, 62 (2015).

    Article  CAS  Google Scholar 

  18. N. S. Nesterov, V. P. Pakharukova, and O. N. Martyanov, J. Supercrit. Fluids. 130, 133 (2017).

    Article  CAS  Google Scholar 

  19. H. J. Muñoz, S. A. Korili, and A. Gil, Materials 15 (9), 3288 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. A. N. Shigapov, G. W. Graham, R. W. McCabe, and H. K. Plummer, Jr., Appl. Catal. A: Gen. 210 (1–2), 287 (2001).

    Article  CAS  Google Scholar 

  21. A. N. Shigapov, H.-W. Jen, G. W. Graham, W. Chun, and R. W. McCabe, Stud. Surf. Sci. Catal. 130, 1373 (2000).

    Article  Google Scholar 

  22. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Chernyak, A. V. Levanov, N. E. Strokova, and V. V. Lunin, Rus. J. Phys. Chem. A 90, 2157 (2016).

    Article  CAS  Google Scholar 

  23. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Chernyak, A. V. Levanov, N. E. Strokova, and V. V. Lunin, RSC Adv. 7, 51359 (2017).

  24. V. V. Shishova, K. I. Maslakov, A. V. Fionov, O. Ya. Isaikina, and V. V. Lunin, Appl. Surf. Sci. 485, 432 (2019).

    Article  ADS  Google Scholar 

  25. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, and V. V. Lunin, Molecules 25 (18), 4242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. I. Yu. Kaplin, E. S. Lokteva, A. V. Tikhonov, K. A. Zhilyaev, E. V. Golubina, K. I. Maslakov, A. O. Kamaev, and O. Ya. Isaikina, Top. Catal. 63, 86 (2020).

    Article  CAS  Google Scholar 

  27. I. Yu. Kaplin, E. S. Lokteva, A. V. Tikhonov, K. I. Maslakov, O. Ya. Isaikina, and E. V. Golubina, Catalysts 12 (12), 1575 (2022).

    Article  CAS  Google Scholar 

  28. E. V. Golubina, I. Yu. Kaplin, A. V. Gorodnova, E. S. Lokteva, O. Ya. Isaikina, and K. I. Maslakov, Molecules 27 (18), 6095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. Yu. Kaplin, E. S. Lokteva, K. I. Maslakov, A. V. Tikhonov, A. N. Kharlanov, A. V. Fionov, A. O. Kamaev, O. Ya. Isaikina, S. V. Maksimov, and E. V. Golubina, Appl. Surf. Sci. 594, 153473 (2022).

    Article  CAS  Google Scholar 

  30. E. A. Lagunova, Y. D. Ivakin, M. Y. Sinev, D. P. Shashkin, Z. T. Fattakhova, and Yu. A. Gordienko, Russ. J. Phys. Chem. B 14, 1163 (2020). https://doi.org/10.1134/S199079312007009X

    Article  CAS  Google Scholar 

  31. P. R. Vasyutin, E. A. Lagunova, M. Y. Sinev, Yu. D. Ivakin, Yu. A. Gordienko, and D. P. Shashkin, Russ. J. Phys. Chem. B 16, 1231 (2022). https://doi.org/10.1134/S1990793122070168

    Article  CAS  Google Scholar 

  32. P. R. Vasyutin, Y. A. Gordienko, M. Y. Sinev, Yu. D. Ivakin, and E. A. Lagunova, Russ. J. Phys. Chem. B 16, 1259 (2022). https://doi.org/10.1134/S199079312207017X

    Article  CAS  Google Scholar 

  33. M. Sinev, E. Ponomareva, I. Sinev, V. Lomonosov, Yu. Gordienko, Z. Fattakhova, and D. Shashkin, Catal. Today 333, 36 (2019).

    Article  CAS  Google Scholar 

  34. Q. Zhang and F. Saito, J. Am. Ceram. Soc. 83, 439 (2000).

    Article  CAS  Google Scholar 

  35. A. Dhahri, K. Horchani-Naifer, A. Benedetti, F. Enrichi, and M. Ferid, Opt. Mater. (Amsterdam) 34, 1742 (2012).

    Article  CAS  ADS  Google Scholar 

  36. T. Brylewski and M. M. Bucko, Ceram. Int. 39, 5667 (2013).

    Article  CAS  Google Scholar 

  37. E. Mendoza-Mendoza, S. M. Montemayor, J. I. Escalante-García, and A. F. Fuentes, J. Am. Ceram. Soc. 95, 1276 (2012).

    Article  CAS  Google Scholar 

  38. S. Li, B. Bergman, and Z. Zhao, Mater. Chem. Phys. 132, 309 (2012).

    Article  CAS  Google Scholar 

  39. Y. D. Ivakin and M. N. Danchevskaya, Russ. J. Phys. Chem. B 12, 1205 (2018). https://doi.org/10.1134/S1990793118080055

    Article  CAS  Google Scholar 

  40. Yu. D. Ivakin, M. N. Danchevskaya, A. A. Kholodkova, G. P. Muravieva, and V. V. Rybalchenko, J. Supercrit. Fluids 159 (104771), 2020.

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 23-13-00360, https://rscf.ru/project/23-13-00360/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Sinev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasyutin, P.R., Sinev, M.Y., Ivakin, Y.D. et al. Synthesis of Mixed La–Al Oxides by Treatment in a Water Fluid Medium and Their Catalytic Properties in Methane Oxidation. Russ. J. Phys. Chem. B 17, 1593–1602 (2023). https://doi.org/10.1134/S1990793123080043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123080043

Navigation