Skip to main content
Log in

Ferrocene-Modified Resorcinol–Formaldehyde Aerogels

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An efficient method has been developed for the synthesis of resorcinol–formaldehyde hybrid aerogels with ferrocene subunit fragments embedded in their polymer structure. For gelation preceding the synthesis of aerogels, dioxane was used for the first time as the main reaction solvent. The gels were converted into aerogels using SC-CO2. The aerogel samples were characterized in detail by Mössbauer spectroscopy, nitrogen adsorption, and atomic absorption spectroscopy. The density of the materials was determined. The iron content in the resulting aerogels varies from 1.5 to 11 wt % (or 5.6–36.3 wt % ferrocene units). The metallocene subunits are present in aerogels in two valence-oxidation states: ferrocene and ferrocenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. I. Smirnova and P. Gurikov, Annu. Rev. Chem. Biomol. Eng. 8, 307 (2017).

    Article  PubMed  Google Scholar 

  2. N. V. Men’shutina, A. M. Katalevich, and I. Smirnova, Russ. J. Phys. Chem. B 8, 973 (2014).

    Article  Google Scholar 

  3. P. W. Pekala, J. Mater. Sci. 24, 3221 (1989).

    Article  CAS  Google Scholar 

  4. M. Aegerter, N. Leventis, and M. Koebel, Aerogels Handbook (Advances in Sol-Gel Derived Materials and Technologies) (Springer, New York, 2011).

    Google Scholar 

  5. S. A. Al-Muhtaseb and G. A. Ritter, Adv. Mater. 15, 101 (2003).

    Article  CAS  Google Scholar 

  6. A. Peikolainen, Organic Aerogels Based on 5-Methylresorcinol (TUT Press, Tallinn, 2011).

    Google Scholar 

  7. I. S. Brilliantova, I. V. Lebedev, M. G. Gordienko, and N. V. Menshutina, Russ. J. Phys. Chem. B 13, 1174 (2019).

    Article  CAS  Google Scholar 

  8. L. Erkhova, I. Presniakov, M. Afanasov, D. Lemenovskiy, H. Yu, L. Wang, M. Danilson, and M. Koel, Polymers 12, 1582 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. K. Verma, P. Khare, and N. Verma, Green Process. Synth. 4, 37 (2015).

    CAS  Google Scholar 

  10. L. Wang, H. Xu, J. Gao, J. Yao, and Q. Zhang, Coord. Chem. Rev. 398, 213016 (2019).

    Article  Google Scholar 

  11. R. D. A. Hudson, J. Organomet. Chem. 637–639, 479 (2001).

    Google Scholar 

  12. M. Gallei and C. Rettiger, Chem.-Eur. J. 24, 10006 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. D. H. Evans, Chem. Rev. 108, 2113 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Q. Ma, Y. Qi, J. Li, W. Wang, and X. Sun, Appl. Organomet. Chem. 32, 3935 (2017).

    Article  Google Scholar 

  15. A. Khan, L. Wang, H. Yu, M. Haroon, R. S. Ullah, A. Nazir, T. Elshaarani, M. Usman, S. Fahad, and F. Haq, Appl. Organomet. Chem. 32, 4575 (2018).

    Article  Google Scholar 

  16. Z. Meng, K. Sato, T. Sukegawa, K. Dyaizu, J. Xiang, Y.-H. Feng, Y. H. Lo, H. Nishide, and W.-Y. Wong, J. Organomet. Chem. 812, 51 (2016).

    Article  CAS  Google Scholar 

  17. J. Xiang, K. Sato, H. Tokue, K. Dyaizu, C.-L. Ho, H. Nishide, W.-Y. Wong, and M. Wei, Eur. J. Inorg. Chem., No. 7, 1030 (2016).

  18. V. N. Talanova, O. L. Lependina, D. Kh. Kitaeva, N. M. Kabaeva, R. U. Takazova, and A. G. Buyanovskaya, Inorg. Mater. 58, 31 (2022).

    Article  Google Scholar 

  19. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

    Article  CAS  Google Scholar 

  20. L. V. Erkhova, Y. M. Panov, N. S. Gavryushenko, V. V. Zaitsev, Yu. S. Lukina, D. V. Smolentsev, K. A. Vorob’ev, D. P. Krut’ko, and D. A. Lemenovskii, Russ. J. Phys. Chem. B 14, 1158 (2020).

    Article  CAS  Google Scholar 

  21. R. Sebesta, K. Plevova, and B. A. Mudrakova, Synthesis 50, 760 (2017).

    Article  Google Scholar 

  22. R. H. Herber and T. P. Hanusu, Hyperfine Interact. 108, 563 (1997).

    Article  CAS  Google Scholar 

  23. R. H. Herber, Inorg. Chim. Acta 495, 118972 (2019).

    Article  CAS  Google Scholar 

  24. R. H. Herber, I. Felner, and I. Nowik, Hyperfine Interact. 237, 100 (2016).

    Article  Google Scholar 

  25. I. Nowik, Hyperfine Interact. 13, 89 (1983).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the LIK company for technical support of this work.

This study was performed using the equipment of the Multiaccess Center, Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The elemental analysis was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the government contract (no. 075-03-2023-642). It was performed using the equipment of the Center for Molecular Composition Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Panova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, L.V., Lemenovskii, D.A., Afanasov, M.I. et al. Ferrocene-Modified Resorcinol–Formaldehyde Aerogels. Russ. J. Phys. Chem. B 17, 1526–1533 (2023). https://doi.org/10.1134/S1990793123070175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123070175

Keywords:

Navigation