Skip to main content
Log in

Biopolymer Aerogels as Nasal Drug Delivery Systems

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Protein (eggwhite) and chitosan aerogel microparticles characterized by low density, developed morphology, high specific surface area, high porosity, large volume, and small pore diameter, have been obtained. Particle size distribution curves were obtained by laser diffraction, from which the number average and aerodynamic diameters were calculated. The aerodynamic diameter of all of the obtained biopolymer aerogels lies in the range required for targeted delivery of active pharmaceutical ingredients (APIs) to the olfactory region of the nasal cavity. Experimental studies were performed to introduce the “melatonin” API in the pores of biopolymer aerogels at the solvent replacement and supercritical adsorption steps. The mass fractions of APIs in the resulting biopolymer aerogel–API pharmaceutical composites were determined by high-performance liquid chromatography. An X-ray powder diffraction analysis showed that API was present in pharmaceutical compositions mainly in the amorphous state. The results of in vivo experimental studies showed that in the case of intranasal administration of both biopolymer aerogel–API composites, the maximum concentration of API in brain tissues is reached already after 30 min. This proves that the obtained biopolymer aerogels based on protein (eggwhite) and chitosan are promising for use as API carrier matrices in the development of nasal drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. A. V. Kolnoochenko, A. N. Ershova, P. A. Gurikov, and N. V. Menshutina, “Aerogels—new promising materials,” Khim. Prom-st’ Segodnya, No. 11, 31 (2011).

    Google Scholar 

  2. J. Stergar and M. Uros, J. Sol-Gel Sci. Technol. 77, 740 (2016).

    Article  Google Scholar 

  3. B. Sultankulov, D. Berillo, K. Sultankulova, T. Tokay, and A. Saparov, Biomolecules 9 (9), 470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. Lovskaya and N. Menshutina, Materials 13 (2), 319 (2020).

    Article  Google Scholar 

  5. N. V. Menshutina, D. D. Lovskaya, A. E. Lebedev, and E. A. Lebedev, Russ. J. Phys. Chem. B 11, 1296 (2017).

    Article  CAS  Google Scholar 

  6. D. Lovskaya, N. Menshutina, M. Mochalova, A. Nosov, and A. Grebenyuk, Polymers (Basel) 12 (9), 2055 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. I. Lebedev, A. Uvarova, M. Mochalova, and N. Menshutina, Computation 10 (8), 1 (2022).

    Article  Google Scholar 

  8. F. Laffleur and B. Bauer, Int. J. Pharm. 607, 3 (2021).

    Article  Google Scholar 

  9. J. Filipović-Grčić and A. Hafner, in Pharmaceutical Manufacturing Handbook: Production and Processes, Ed. by S. Cox (Wiley Interscience, New York, 2007).

    Google Scholar 

  10. C. Witschi and R. J. Mrsny, Pharm. Res. 16 (3), 384 (1999).

    Article  Google Scholar 

  11. M. I. Ugwoke, R. U. Agu, H. Vanbilooen, J. Baetens, P. Augustijns, N. Verbeke, L. Mortelmans, A. Verbruggen, R. Kinget, and G. Bogmans, J. Controlled Release 68 (2), 209 (2000).

    Article  Google Scholar 

  12. E. B. Yahya, F. Jumaat, A. A. Amirul, A. S. Adnan, N. G. Olaiya, C. K. Abdullah, S. Rizal, M. K. Mohamad Haafiz, and H. P. S. Abdul Khalil, Antibiotics (Basel) 9 (10), 5 (2020).

    Google Scholar 

  13. J. Silvestre, N. Delattre, P. Michaud, and H. de Baynast, Polymers (Basel) 13 (22), 1 (2021).

    Google Scholar 

  14. P. Mura, F. Maestrelli, M. Cirri, and N. Mennini, Mar. Drugs 20 (5), 1 (2022).

    Article  Google Scholar 

  15. S. N. Mikhailov and N. R. Kildeeva, Izv. Ufim. Nauchn. Tsentra RAN 3 (2), 69 (2018).

    Google Scholar 

  16. W. Shi, Y. C. Ching, and C. H. Chuah, Int. J. Biol. Macromol. 170, 753 (2021).

    Article  Google Scholar 

  17. K. Ganesan, T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Prebisch, P. Niemeyer, I. Smirnova, and B. Milow, Materials 11 (11), 11 (2018).

    Article  Google Scholar 

  18. M. B. Stie, M. Corezzi, BombinA. D. Juncos, F. Ajalloueian, E. Attrill, S. Pagliara, J. Jacobsen, I. S. Chronakis, H. M. Nielsen, and V. Fodera, ACS Appl Nano Mater. 3 (2), 1914 (2020).

    Google Scholar 

  19. A. Akhmetova, G. M. Lanno, K. Kogermann, M. Malmsten, T. Rades, and A. Heinz, Pharmaceutics 12 (5), 3 (2020).

    Article  Google Scholar 

  20. A. K. M. M. Alam and Q. T. H. Shubhra, J. Mater. Chem. B 3 (31), 6475 (2015).

    Article  Google Scholar 

  21. C. Kleemann, I. Selmer, I. Smirnova, and U. Kulozik, Food Hydrocoll. 83, 370 (2018).

    Article  Google Scholar 

  22. W. K. Fong and R. Mezzenga, Biomacromolecules 18 (9), 2861 (2017).

    Google Scholar 

  23. M. Betz, C. A. Garcia-Gonzalez, R. P. Subrahmanyam, I. Smirnova, and U. Kulozik, J. Supercrit. Fluids 72, 113 (2012).

    Article  Google Scholar 

  24. I. Selmer, C. Kleeman, U. Kulozik, S. Heinrich, and I. Smirnova, J. Supercrit. Fluids 106, 42 (2015).

    Article  CAS  Google Scholar 

  25. N. V. Menshutina, D. D. Lovskaya, A. N. Bezchasnyuk, and N. V. Grigoryeva, SGEM. International Multidisciplinary Scientific Geoconference 19 (6), 461 (2019).

    Google Scholar 

  26. M. B. Stie, K. Kalouta, V. Vetri, and V. Fodera, J. Controlled Release 344, 15 (2022).

    Article  Google Scholar 

  27. R. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, and I. Smirnova, Gels 1 (2), 294 (2015).

    Article  Google Scholar 

  28. A. Iglesias-Mejuto and C. A. García-González, Mater. Sci. Eng. C 131, 1 (2021).

    Article  Google Scholar 

  29. L. Baldino, S. Concilio, S. Cardea, and E. Reverchon, Polymers (Basel), 8 (4), 106, (2016).

    Article  PubMed  Google Scholar 

  30. I. Smirnova, Aerogels Handbook (Springer, New York, 2011).

    Google Scholar 

  31. M. T. Noman, N. Amor, A. Ali, S. Petrik, R. Coufal, K. Adach, and M. Fijalkowski, Gels 7 (4), 1 (2021).

    Article  Google Scholar 

  32. C. A. García-González, M. Jin, J. Gerth, C. Alvarez-Lorenzo, and I. Smirnova, Carbohydr. Polym. 117, 799 (2015).

    Article  Google Scholar 

  33. D. Lovskaya, A. Lebedev, and N. Menshutina, J. Supercrit. Fluids 106, 115 (2015).

    Article  CAS  Google Scholar 

  34. L. E. Nita, A. Ghilan, A. G. Rusu, I. Neamtu, and A. P. Chiriac, Pharmaceutics 12 (5), 1 (2020).

    Article  Google Scholar 

  35. C. López-Iglesias, A. M. Casielles, A. Altay, R. Bettini, C. Alvarez-Lorenzo, and C. A. García-González, Chem. Eng. J. 357, 559 (2019).

    Article  Google Scholar 

  36. M. Ahmadi, A. Madadlou, and A. A. Saboury, Food Chem. 196, 1020 (2016).

    Article  Google Scholar 

  37. I. Smirnova, S. Suttiruengwong, M. Seiler, and W. Arlt, Pharm. Dev. Technol. 9 (4), 449 (2004).

    Google Scholar 

  38. D. Mei, S. Mao, W. Sun, Y. Wang, and T. Kissel, Eur. J. Pharm. Biopharm. 70 (3), 876 (2008).

    Article  Google Scholar 

  39. L. Na, S. Mao, Jo. Wang, and W. Sun, Int. J. Pharm. 397 (1–2), 60 (2010).

    Article  Google Scholar 

  40. C. A. García-González, M. Alnaief, and I. Smirnova, Carbohydr. Polym. 86 (4), 1431 (2011).

    Article  Google Scholar 

  41. T. Mehling, I. Smirnova, U. Guenther, and R. H. H. Neubert, J. Non-Cryst. Solids 355 (50–51), 2474 (2009).

    Article  Google Scholar 

  42. A. Veronovski, Z. Novak, and Ž. Knez, J. Biomater. Sci. Polym. Ed. 23 (7), 880 (2012).

    Article  Google Scholar 

  43. R. Obaidat, B. M. Tashtoush, M. F. Bayan, R. T. Bustami, and M. Alnaief, AAPS PharmSciTech 16 (6), 1239 (2015).

    Article  Google Scholar 

  44. Z. Ulker and C. Erkey, J. Controlled Release 177, 55 (2014).

    Article  Google Scholar 

  45. P. Gurikov and I. Smirnova, J. Supercrit. Fluids 132, 115 (2018).

    Article  Google Scholar 

  46. C. A. García-González, A. Sosnik, J. Kalmar, I. De Marco, C. Erkey, A. Concheiro, and C. Alvarez-Lorenzo, J. Controlled Release 332, 45 (2021).

    Article  Google Scholar 

  47. M. Propster and J. Szekely, Powder Technol. 17 (1), 130 (1977).

    Article  Google Scholar 

  48. C. Rudaz, R. Courson, L. Bonnet, S. Calas-Etienne, H. Sallee, and T. Budtova, Biomacromol. Am. Chem. Soc. 15 (6), 2192 (2014).

    Google Scholar 

  49. N. N. Gavrilova, V. V. Nazarov, and O. V. Yarovaya, Microscopic Methods for Determining the Particle Size of Dispersed Materials, Ed. by R. G. Chirkova (Izd. Tsentr RHTU im. D. I. Mendeleeva, Moscow, 2012) [in Russian].

  50. R. Vanbever, J. D. Mintzes, J. Wang, J. Nice, D. Chen, R. Batycky, R. Langer, and D. A. Edwards, Pharm. Res. 16 (11), 1738 (1999).

    Article  Google Scholar 

  51. S. Filali, C. Bergamelli, M. J. Tall, D. Salmon, D. Laleye, C. Dhelens, E. Diouf, C. Pivot, and F. Pirot, J. Pharm. Anal. 7 (4), 239 (2017).

    Article  Google Scholar 

  52. M. Agrawal, Sw. Saraf, Sh. Saraf, S. Antimisiaris, M. B. Chougule, S. A. Shoyele, and A. Alexander, J. Controlled Release 281, 155 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science, Russian Federation (grant no. 075-15-2020-792, unique identifier RF-190220X0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Menshutina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national, and/or institutional principles of the care and use of animals have been observed.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshutina, N.V., Uvarova, A.A., Mochalova, M.S. et al. Biopolymer Aerogels as Nasal Drug Delivery Systems. Russ. J. Phys. Chem. B 17, 1507–1518 (2023). https://doi.org/10.1134/S1990793123070163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123070163

Keywords:

Navigation