Skip to main content
Log in

Extraction of Chitin-Containing Complexes from the Fomes fomentarius Fungus Fruiting Body by the Sub- and Supercritical Fluid Extraction Methods

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Chitin-containing complexes (CCCs) with a chitin content of up to 18.7% have been extracted from the fruiting body of tinder fungus Fomes fomentarius by sub- and supercritical fluid extraction (SbCFE and SCFE) with ethanol at a yield of 57–88%. The effect of the extraction time, temperature, and pressure on the yield and properties of the resulting CCCs has been determined; the complexes have been characterized in terms of elemental and functional composition (IR spectroscopy). It has been shown that the resulting complexes exhibit a high sorption capacity of up to 312 mg/g with respect to the basic dye (methylene blue) and up to 170 mg/g with respect to the acid dye (Congo red); this finding suggests that the resulting complexes/biosorbents have a polyampholytic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. L. R. R. Berger, T. C. M. Stamford, T. M. Stamford-Arnaud, S. R. C. de Alcantara, A. C. da Silva, A. M. da Silva, A. E. do Nascimento, and G. M. de Campos-Takaki, Int. J. Mol. Sci. 15 (5), 9082 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. Fan, Food Chem. 101 (3), 1158 (2007).

    Article  CAS  Google Scholar 

  3. A. Y. Allam and N. V. Dolganova, Sci. Light 1 (4), 84 (2017).

    Google Scholar 

  4. A. Abdulkarim, M. Isa Tijani, S. Abdulsalam, A. J. Muhammad, and A. O. Ameh, Civil Environ. Res. 3 (2), 108 (2013).

    Google Scholar 

  5. V. S. Balabaev, I. A. Glotova, and V. N. Izmajlov, Sovrem. Probl. Nauki Obraz., No. 1-1, 235 (2015).

  6. M. D. Mukatova, N. A. Kirichko, and E. N. Romanenkova, Vestn. MGTU 18 (4), 641 (2015).

    Google Scholar 

  7. V. P. Kurchenko, S. V. Buga, N. V. Petrashkevich, T. V. Butkevich, A. A. Vetoshkin, E. L. Demchenkov, A. D. Lodygin, O. Yu. Zueva, V. P. Varlamov, and O. I. Borodin, Tr. BSU 11 (1), 110 (2016).

    Google Scholar 

  8. L. F. Gorovoj and V. N. Kosyakov, Biopolimery i kletka 12 (4), 49 (1996).

    CAS  Google Scholar 

  9. V. N. Unrod and T. V. Solodovnik, Biopolimery i kletka 17 (6), 526 (2001).

    CAS  Google Scholar 

  10. Chitosan, Ed. by K. G. Skryabin, S. N. Mikhajlov, and V. P. Varlamov (Tsentr Bioinzheneriya RAN, Moscow, 2013) [in Russian].

    Google Scholar 

  11. G. Chihara, J. Hamuro, Y. Maeda, Y. Arai, F. Fukuoka, Cancer Res. 30 (11), 2776 (1970).

    CAS  PubMed  Google Scholar 

  12. Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Application, Ed. by T. Anthonsen (Elsevier, London, 1990).

    Google Scholar 

  13. L. S. Galbrajh, Soros. Obraz. Zh. 7 (1), 51 (2001).

    Google Scholar 

  14. V. M. Bykova and S. V. Nemcev, Tr. VNIRO 22, 1988.

  15. O. I. Pokrovskij, D. I. Prokopchuk, S. A. Bagateliya, S. A. Pokryshkin, M. O. Kostenko, O. O. Parenago, A. A. Markoliya, and V. V. Lunin, Khim. Rast. Syr’ya, No. 4, 373 (2019).

    Google Scholar 

  16. A. A. Grishin, N. V. Zorina, and V. I. Luckij, Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol. 15 (4), 36 (2015).

    Google Scholar 

  17. O. S. Brovko, I. A. Palamarchuk, T. A. Bojcova, K. G. Bogolicyn, N. A. Val’chuk, and A. D. Ivahnov, Fundam. Issled., No. 11, 659 (2015).

  18. D. V. Zhilcov, O. S. Brovko, K. G. Bogolicyn, A. D. Ivahnov, I. A. Palamarchuk, and T. A. Bojcova, Usp. Sovrem. Estestvozn., No. 11-2, 210 (2018).

  19. O. S. Brovko, A. D. Ivakhnov, I. A. Palamarchuk, and T. A. Boitsova, Russ. J. Phys. Chem. B 11, 1306 (2017).

    Article  CAS  Google Scholar 

  20. T. A. Boitsova, O. S. Brovko, A. D. Ivakhnov, and D. V. Zhiltsov, Russ. J. Phys. Chem. B 14 (7), 1135 (2020).

    Article  CAS  Google Scholar 

  21. A. D. Ivakhnov, K. S. Sadkova, A. S. Sobashnikova, and T. E. Skrebets, Russ. J. Phys. Chem. B 13 (7), 1135 (2019).

    Article  CAS  Google Scholar 

  22. O. S. Brovko, A. D. Ivakhnov, T. A. Boitsova, and D. V. Zhiltsov, Russ. J. Phys. Chem. B 15 (8), 1273 (2021).

    Article  CAS  Google Scholar 

  23. O. S. Brovko, A. D. Ivakhnov, T. A. Boitsova, and D. V. Zhiltsov, Russ. J. Phys. Chem. B 16 (8), 1332 (2022).

    Article  CAS  Google Scholar 

  24. K. G. Bogolicyn, T. A. Bojcova, I. A. Kuznecova, N. S. Larionov, I. A. Palamarchuk, A. S. Aksenov, and O. S. Brovko, Vestn. MGOU. Ser. Estestv. Nauki, No. 3, 132 (2011).

    Google Scholar 

  25. S. Armenta, S. Garrigues, and M. Guardia, Trends Anal. Chem. 71, 2 (2015).

    Article  CAS  Google Scholar 

  26. G. Cravotto, A. Binello, and L. Orio, Agro Food Industry Hi Tech. 22 (6), 24 (2011).

    Google Scholar 

  27. V. M. Ushanova, L. I. Chencova, and V. K. Gorchakovskij, Khim. Khim. Tekhnol. 49 (6), 82 (2006).

    CAS  Google Scholar 

  28. E. B. Kershengolc, A. A. Shejn, and B. M. Kershengol’c, Nauka Obraz., No. 2 (38), 74 (2005).

  29. B. M. Kershengolc, P. A. Remigajlo, A. A. Shein, and E. B. Kershengol’c, Dalnevost. Med. Zh., No. 1, 25 (2004).

  30. N. A. Kochunova, Byull. Fiziol. Patol. Dykh., No. 51, 112 (2014).

  31. S. P. Vasser, Mezhdistsipl. Nauchn. Prikl. Zh. Biosfera 7 (2), 238 (2015).

    Google Scholar 

  32. O. M. Andersen and K. R. Markham, Flavonoids: Chemistry, Biochemistry and Applications (Boca Raton: CRC Press, 2005).

    Book  Google Scholar 

  33. T. A. Denisenko, A. B. Vishnikin, and L. P. Cyganok, Anal. Kontrol 19 (3), 242 (2015).

    Google Scholar 

  34. L. Kalitukha and M. Sari, Int. J. Res. Stud. Sci., Eng. Technol. 6 (1), 1 (2019).

    Google Scholar 

  35. L. Kalitukha, Fungal Biol. Biotechnol. 8 (5), 1 (2021).

    Article  Google Scholar 

  36. A. M. Kostina, V. G. Babickaya, and A. G. Lobanok, Prikl. Biokh. Mikrobiol. 16 (4), 58 (1978).

    Google Scholar 

  37. O. V. Pavlova, E. A. Belova, and T. P. Trockaya, Nauchn. Raboty 2 (46), 121 (2014).

    Google Scholar 

  38. A. V. Obolenskaya, Z. P. El’nickaya, and A. L. Leonovich, Laboratory Work on the Chemistry of Wood and Cellulose (Ekologiya, Moscow, 1991) [in Russian].

    Google Scholar 

  39. E. I. Evstigneev, Khim. Rast. Syr’ya, No. 2, 5 (2016).

    Google Scholar 

  40. State Pharmacopoeia of the Russian Federation (Nauchn. Tsentr Ekspertizy Sredstv Med. Primen., Moscow, 2008) [in Russian].

  41. Workshop on Biochemistry, Ed. by S. E. Severenin and G. A. Solov’eva (Izd. Mos. Gos. Univ., Moscow, 1989).

    Google Scholar 

  42. V. P. Ivshin, T. N. Ivshina, F. F. Sharnina, and S. D. Artamonova, Polymer Sci. Ser. B 49 (11–12), 305 (2007).

    Article  Google Scholar 

  43. I. Ya. Bershtejn and Yu.L. Kaminskij, Spectrophotometric Analysis in Organic Chemistry (Khimiya, Leningrad, 1975) [in Russian].

    Google Scholar 

  44. A. K. Tokmalaev, N. A. Polovinkina, N. G. Bezborodov, S. P. Popova, V. P. Golub, and I. V. Barysheva, Vestn. RUDN. Ser. Med., No. 4, 59 (2012).

  45. A. P. Karmanov, L. S. Kocheva, and M. F. Borisenkov, Zh. Butlerovskie Soobshch. 45 (1), 76 (2016).

    Google Scholar 

  46. O. S. Brovko, D. V. Zhiltsov, A. D. Ivakhnov, and M. V. Bogdanov, Russ. J. Bioorg. Chem. 47 (7), 1424 (2021).

    Article  CAS  Google Scholar 

  47. D. V. Zhilcov, O. S. Brovko, I. A. Palamarchuk, T. A. Bojcova, K. G. Bogolicyn, and D. G. Chuhchin, Izv. Ufim. Nauchn. Tsentra RAN 3 (3), 9 (2018).

    Google Scholar 

  48. G. A. Ihtiyarova, Sh. B. Mamatova, and F. N. Kurbanova, Universum: Tekh. Nauki 50 (5), 49 (2018).

    Google Scholar 

  49. N. F. Habibullaeva, N. A. Sidikova, and A. H. Haitbaev, Universum: Tekh. Nauki 87 (9), 30 (2021).

    Google Scholar 

  50. E. Harki, T. Talou, and R. Dargent, Food Chem. 58, 69 (1997).

    Article  CAS  Google Scholar 

  51. A. Mbonyiryivuze, B. Mwakikunga, S. M. Dhlamini, and M. Maaza, Mater., Chem. Phys. 3 (2), 25 (2015).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Center for collective use of scientific equipment “Arktika” Core Facility of the Lomonosov Northern (Arctic) Federal University) and the Center for collective use “Critical Technologies of the Russian Federation in the Field of Environmental Safety of the Arctic Region” (N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences). The authors are grateful to Prof. Yu.G. Khabarov (Northern (Arctic) Federal University) for his assistance in conducting the IR spectroscopy studies.

Funding

This work was supported by the Ministry of Economic Development, Industry, and Science of Arkhangelsk oblast (subject no. 122111400010-7 “Complex Processing of the Biomass of Wood-Destroying Fungi to Produce Biologically Active Substances”) and the Ministry of Science and Higher Education of the Russian Federation in terms of SCFE experiments (project no. FSRU-2021-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Ivakhnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brovko, O.S., Ivakhnov, A.D., Zhiltsov, D.V. et al. Extraction of Chitin-Containing Complexes from the Fomes fomentarius Fungus Fruiting Body by the Sub- and Supercritical Fluid Extraction Methods. Russ. J. Phys. Chem. B 17, 1519–1525 (2023). https://doi.org/10.1134/S199079312307014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312307014X

Keywords:

Navigation