We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Solubility of Malonic and Succinic Acids in CO2–Solvent Mixtures and Their Micronization by Supercritical Antisolvent Precipitation

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

It is shown that the yield of micronization products in a supercritical antisolvent (SAS) precipitation can be used for a qualitative assessment of the solubility of substances in CO2–solvent mixtures. Assumptions for this approach are considered and recommendations are made to increase the accuracy of the assessment using this approach. The effect of the degree of supersaturation of the CO2–solvent–substance being micronized system on the morphology and size of particles of malonic and succinic acids micronized by the SAS method is studied. The possibility of obtaining α-succinic acid by the SAS method is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. D. Yu. Zalepugin, N. A. Tilkunova, and I. V. Chernyshova, Sverkhkrit. Flyuidy: Teoriya Praktika, No. 1, 5 (2008).

    Google Scholar 

  2. E. Reverchon, J. Supercrit. Fluids 15 (1), 1 (1999).

    Article  CAS  Google Scholar 

  3. E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, et al., Russ. Chem. Rev. 89 (12), 1337 (2020).

    Article  CAS  Google Scholar 

  4. A. M. Vorobei and O. O. Parenago, Russ. J. Phys. Chem. 95 (3), 407 (2021).

    Article  CAS  Google Scholar 

  5. G. Liu, J. Li, and S. Deng, Pharmaceutics 13 (4), 475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, et al., Russ. J. Phys. Chem. B 10, 1072 (2016).

    Article  CAS  Google Scholar 

  7. P. Franco and I. De Marco, Processes 8 (8), 938 (2020).

    Article  CAS  Google Scholar 

  8. N. Esfandiari, J. Supercrit. Fluids 100, 129 (2015).

    Article  CAS  Google Scholar 

  9. S. Clercq, A. Mouahid, G. Pepe, and E. Badens, Cryst. Growth Des. 20 (10), 6863 (2020).

    Article  CAS  Google Scholar 

  10. V. Prosapio, I. De Marco, and E. Reverchon, J. Supercrit. Fluids 138, 247 (2018).

    Article  CAS  Google Scholar 

  11. L. Padrela, M. A. Rodrigues, S. P. Velaga, H. A. Matos, and E. G. De Azevedo, Eur. J. Pharm. Sci. 38 (1), 9 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. A. O’Sullivan, B. Long, V. Verma, K. M. Ryan, and L. Padrela, Int. J. Pharm. 621, 121798 (2022).

    Article  PubMed  Google Scholar 

  13. N. S. Nesterov, A. S. Shalygin, V. P. Pakharukova, T. S. Glazneva, and O. N. Martyanov, J. Supercrit. Fluids 149, 110 (2019).

    Article  CAS  Google Scholar 

  14. A. V. Gavrikov, A. S. Loktev, A. Ilyukhin, I. E. Mukhin, M. A. Bykov, K. I. Maslakov, A. M. Vorobei, O. O. Parenago, A. Sadovnikov, and A. G. Dedov, Dalton Trans. 51, 18446 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. A. V. Gavrikov, A. S. Loktev, A. B. Ilyukhin, I. E. Mukhin, M. A. Bykov, A. M. Vorobei, O. O. Parenago, K. A. Cherednichenko, A. A. Sadovnikov, and A. G. Dedov, Int. J. Hydrogen Energy 48 (8), 2998 (2023).

    Article  CAS  Google Scholar 

  16. P. Franco, O. Sacco, I. De Marco, and V. Vaiano, Catalysts 9 (4), 346 (2019).

    Article  Google Scholar 

  17. A. A. Philippov, N. N. Nesterov, V. P. Pakharukova, and O. N. Martyanov, Appl. Catal. A: Gen. 643, 118792 (2022).

    Article  CAS  Google Scholar 

  18. O. S. Dobrynin, M. N. Zharkov, I. V. Kuchurov, I. V. Fomenkov, S. G. Zlotin, K. A. Monogarov, D. B. Meerov, A. N. Pivkina, and N. V. Muravyev, Nanomaterials 9 (10), 1386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. M. Pourmortazavi and S. S. Hajimirsadeghi, Ind. Eng. Chem. Res. 44 (17), 6523 (2005).

    Article  CAS  Google Scholar 

  20. Y. I. Zuev, A. M. Vorobei, and O. O. Parenago, Russ. J. Phys. Chem. B 15, 11072 (2021).

    Article  Google Scholar 

  21. A. M. Vorobei, K. B. Ustinovich, S. A. Chernyak, S. V. Savilov, O. O. Parenago, and M. G. Kiselev, Materials 14 (23), 7428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Gil-Ramirez and I. Rodriguez-Meizoso, Sep. Purif. Rev. 50 (1), 32 (2021).

    Article  CAS  Google Scholar 

  23. S. Peper and R. Dohrn, J. Supercrit. Fluids 66, 2 (2012).

    Article  CAS  Google Scholar 

  24. R. B. Gupta and J.-J. Shim, Solubility in Supercritical Carbon Dioxide (CRC Press, Boca Raton, FL, 2006).

    Book  Google Scholar 

  25. R. D. Oparin, A. Idrissi, M. V. Fedorov, and M. G. Kiselev, J. Chem. Eng. Data 59 (11), 3517 (2014).

    Article  CAS  Google Scholar 

  26. N. N. Kalikin, M. V. Kurskaya, D. V. Ivlev, M. A. Krestyaninov, R. D. Oparin, A. L. Kolesnikov, Y. A. Budkov, A. Idrissi, and M. G. Kiselev, J. Mol. Liq. 311, 113104 (2020).

    Article  CAS  Google Scholar 

  27. R. D. Oparin, E. A. Vorobyev, and M. G. Kiselev, Russ. J. Phys. Chem. B 10, 1108 (2016).

    Article  CAS  Google Scholar 

  28. M. J. Carrott and C. M. Wai, Anal. Chem. 70 (11), 2421 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. D. M. Lamb, T. M. Barbara, and J. Jonas, J. Phys. Chem. 90 (17), 4210 (1986).

    Article  CAS  Google Scholar 

  30. S. G. Bratsch, J. Phys. Chem. Ref. Data 18 (1), 1 (1989).

    Article  CAS  Google Scholar 

  31. Ž. Knez, D. Cör, and M. Knez Hrnčič, J. Chem. Eng. Data 63 (4), 860 (2017).

    Article  Google Scholar 

  32. M. Škerget, Ž. Knez, and M. Knez Hrnčič, J. Chem. Eng. Data 56 (4), 694 (2011).

    Article  Google Scholar 

  33. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, and V. V. Lunin, J. Mol. Liq. 280, 212 (2019).

    Article  CAS  Google Scholar 

  34. O. Pokrovskiy, A. Vorobei, Y. Zuev, M. Kostenko, and V. Lunin, Adv. Powder Technol. 31 (6), 2257 (2020).

    Article  CAS  Google Scholar 

  35. E. V. Kudryashova, I. M. Deygen, K. V. Sukhoverkov, et al., Russ. J. Phys. Chem. B 10, 1201 (2016).

    Article  CAS  Google Scholar 

  36. R. D. Oparin, Y. A. Vaksler, M. A. Krestyaninov, A. Idrissi, S. V. Shishkina, and M. G. Kiselev, J. Supercrit. Fluids 152, 104547 (2019).

    Article  CAS  Google Scholar 

  37. O. D. Linnikov, Russ. Chem. Rev. 83 (4), 343 (2014).

    Article  Google Scholar 

  38. M. Rossmann, A. Braeuer, A. Leipertz, and E. Schluecker, J. Supercrit. Fluids 82, 230 (2013).

    Article  CAS  Google Scholar 

  39. Y. I. Zuev, A. M. Vorobei, A. V. Gavrikov, and O. O. Parenago, Russ. J. Phys. Chem. B 16 (7), 1 (2021).

    Google Scholar 

  40. E. Pretsch, P. Bühlmann, and C. Affolter, Structure Determination of Organic Compounds (Springer, Berlin, 2000).

    Book  Google Scholar 

  41. J. C. Dobrowolski, S. Ostrowski, R. Kolos, and M. H. Jamroz, Vib. Spectrosc. 48 (1), 82 (2008).

    Article  CAS  Google Scholar 

  42. W. C. McCrone and R. Hites, Anal. Chem. 26 (2), 422 (1954).

    Article  CAS  Google Scholar 

  43. P. Lucaioli, E. Nauha, I. Gimondi, L. S. Price, R. Guo, L. Iuzzolino, I. Singh, M. Salvalaglio, S. L. Price, and N. Blagden, CrystEngComm 20 (28), 3971 (2018).

    Article  CAS  Google Scholar 

  44. I. M. Dodd, S. J. Maginn, M. M. Harding, and R. J. Davey, CSD Communication (1998).

  45. J. A. Goedkoop and C. H. MacGillavry, Acta Crystallogr. 10 (2), 125 (1957).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies of the samples by scanning electron microscopy and X-ray powder diffraction analysis were made using the equipment of the Center for Shared Use of Physical Methods of Investigation of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Zuev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobei, A.M., Zuev, Y.I., Gavrikov, A.V. et al. Solubility of Malonic and Succinic Acids in CO2–Solvent Mixtures and Their Micronization by Supercritical Antisolvent Precipitation. Russ. J. Phys. Chem. B 17, 1465–1474 (2023). https://doi.org/10.1134/S1990793123070126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123070126

Navigation