Skip to main content
Log in

Effect of the Structure of Biopolymers on the Morphology of Organic and Carbon Aerogel Nanomaterials Based on Them

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Organic and carbon aerogels based on sodium alginate–chitosan (NaAL–CT) and sodium lignosulfonate–chitosan (NaLS–CT) binary hydrogels are synthesized using supercritical fluid technologies and carbonization. The effect of the mode of replacing the solvent with acetone in hydrogels on the textural properties of aerogels based on the hydrogels is studied. It is shown that the dynamic mode of solvent replacement in binary hydrogels makes it possible to reduce the process time by a factor of six and significantly decrease the consumption of acetone compared with the respective parameters in the case of solvent replacement in the static mode and preserve the developed pore structure of the material. The specific surface area of the NaAL–CT and NaLS–CT organic aerogels is 100 and 260 m2/g, respectively, while that of the carbon aerogels based on them is 438 and 868 m2/g, respectively. Using scanning electron and atomic force microscopy, it is found that the supramolecular structure of the synthesized organic and carbon aerogel nanomaterials is a cluster structure; the main contribution to the particle size distribution in the NaAL–CT and NaLS–CT carbon aerogels is made by the fraction with a particle size of 35–45 and 35–55 nm, respectively. The synthesized organic and carbon aerogels can be used in various practical applications, for example, as a base for supercapacitors in low-voltage electronics, catalysts for various chemical processes, sorption and filtration materials, and carrier matrices for various active substances (medicinal compounds, metals, cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. V. S. Kirchanov, Nanomaterials and Nanotechnologies (Perm. Nat. Res. Polytech. Univ., Perm, 2016), p. 200 [in Russian].

  2. C. A. Garcia-Gonzalez, M. Jin, J. Gerth, C. Alvarez-Lorenzo, and I. Smirnova, Carbohydr. Polym. 117, 797 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. D. L. Baldino, S. Cardea, and E. Reverchon, Chem. Eng. Trans. 43, 739 (2015).

    Google Scholar 

  4. O. S. Brovko, I. A. Palamarchuk, T. A. Boitsova, K. G. Bogolitsyn, N. A. Valchuk, and D. G. Chukhchin, Macromol. Res. 23 (11), 1059 (2015).

    Article  CAS  Google Scholar 

  5. Y. Hu, H. Zhuo, Z. Chen, K. Wu, Q. Luo, Q. Liu, ACS Appl. Mater. Interfaces 10 (47), 40641 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. B. B. Crow and K. D. Nelson, Biopolymers 81, 419 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. A. K. Patterson and D. K. Smith, Chem. Commun. 56 (75), 11046 (2020).

    Article  CAS  Google Scholar 

  8. N. Gorshkova, O. Brovko, I. Palamarchuk, K. Bogolitsyn, and A. Ivakhnov, Polym. Adv. Technol. 32 (9), 3474 (2021).

    Article  CAS  Google Scholar 

  9. O. S. Brovko, I. A. Palamarchuk, T. A. Boitsova, K. G. Bogolitsyn, Y. V. Kazakov, D. G. Chukhchin, and N. A. Valchuk, Fibre Chem. 47 (4), 265 (2015).

    Article  CAS  Google Scholar 

  10. A. Slosarczyk, T. Blaszczynski, and M. Morawski, Mod. Build. Mater., Struct. Tech. 57, 200 (2013).

    Google Scholar 

  11. N. Gorshkova, O. Brovko, I. Palamarchuk, K. Bogolitsyn, A. Ivakhnov, N. Bogdanovich, D. Chukhchin, ad M. Arkhilin, J. Sol-Gel Sci. Technol. 95 (1), 10 (2020).

    Google Scholar 

  12. N. A. Gorshkova, O. S. Brovko, I. A. Palamarchuk, A. D. Ivakhnov, K. G. Bogolitsyn, N. I. Bogdanovich, and D. G. Chukhchin, Russ. J. Phys. Chem. B 15, 1135 (2021).

    Article  CAS  Google Scholar 

  13. L. Baldino, S. Cardea, M. Scognamiglio, and E. Reverchon, J. Supercrit. Fluids 146, 152 (2019).

    Article  CAS  Google Scholar 

  14. M. Guastaferro, E. Reverchon, and L. Baldino, Materials 14 (7), 1631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. P. Batista, V. S. Goncalves, F. B. Gaspar, I. D. Nogueira, A. A. Matias, and P. Gurikov, Int. J. Biol. Macromol. 156, 773 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. D. Lv, Y. Li, and L. Wang, Int. J. Biol. Macromol. 148, 979 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. T. A. Kuznetsova, N. N. Besednova, V. V. Usov, and B. G. Andryukov, Bulletin of Surgery named after I. I. Grekov 179 (4), 109 (2020).

    Article  Google Scholar 

  18. B. Li, Y. Wang, Z. Wang, Y. He, P. Song, and R. Wang, ChemistrySelect 6 (32), 8213 (2021).

    Article  CAS  Google Scholar 

  19. O. Brovko, I. Palamarchuk, K. Bogolitsyn, D. Chukhchin, A. Ivakhnov, and N. Valchuk, Holzforschung 71 (7–8), 583 (2017).

    Article  CAS  Google Scholar 

  20. O. Brovko, I. Palamarchuk, N. Bogdanovich, A. Ivakhnov, D. Chukhchin, M. Belousova, and N. Gorshkova, Mater. Chem. Phys. 269, 124768 (2021).

    Article  CAS  Google Scholar 

  21. O. Brovko, I. Palamarchuk, N. Bogdanovich, A. Ivakhnov, D. Chukhchin, A. Malkov, A. Volkov, M. Arkhilin, and N. Gorshkova, Micropor. Mesopor. Mater. 282, 211 (2019).

    Article  CAS  Google Scholar 

  22. S. A. Ivanovsky, A. S. Vlasov, and N. A. Galkin, Sci., Technol. Educ. 11, 414 (2015).

    Google Scholar 

  23. N. A. Valchuk, O. S. Brovko, I. A. Palamarchuk, T. A. Boitsova, K. G. Bogolitsyn, A. D. Ivakhnov, D. G. Chukhchin, and N. I. Bogdanovich, Russ. J. Phys. Chem. B 13 (7), 1121 (2019).

    Article  CAS  Google Scholar 

  24. V. A. Izumrudov, Adv. Chem. Ser. 77 (4), 401 (2008).

    Google Scholar 

  25. D. A. I. Goring, R. Vuong, C. Gancet, and H. J. Chanzy, J. Appl. Polym. Sci. 27 (4), 931 (1979).

    Article  Google Scholar 

  26. Yu. G. Frolov, Course in Colloid Chemistry. Surface Phenomena and Disperse Systems (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  27. V. A. Kabanov, Russ. Chem. Rev. 1 (1), 5 (2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the instrumentation of Core Facility Center “Arktika” of Northern (Arctic) Federal University and the Center for collective use “Critical Technologies of the Russian Federation in the Field of Environmental Safety of the Arctic Region” (Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences).

Funding

This study was performed under a state task of Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences for 2022–2024 “Physicochemical Bases of Selective Methods for the Isolation, Characterization, and Application of Biologically Active Complexes of High-Latitude Plant Objects for Solving Environmental Monitoring and Health Protection Problems” (project no. 122011700252-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gorshkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palamarchuk, I.A., Gorshkova, N.A., Brovko, O.S. et al. Effect of the Structure of Biopolymers on the Morphology of Organic and Carbon Aerogel Nanomaterials Based on Them. Russ. J. Phys. Chem. B 17, 1434–1441 (2023). https://doi.org/10.1134/S1990793123070096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123070096

Keywords:

Navigation