Skip to main content
Log in

Kinetics of the Decay of Excited Singlet State into a Pair of T-Excitons in Rubrene Films: Mechanism and Manifestation of Exciton Migration

  • CHEMICAL PHYSICS OF NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The kinetics of the decay (splitting) of the excited singlet \({\text{S}}_{1}^{*}\)-state of rubrene molecules into a pair of triplet-excitons (T-excitons) in rubrene films, usually represented in terms of the kinetics ps(t) of the decay of fluorescence (KDF) from the \({\text{S}}_{1}^{*}\)-state, is analyzed in detail. The KDF is known to be significantly controlled by the process of diffusive migration and annihilation of the generated T-excitons. In the analysis, two migration models are considered: the two-state model (TSM), treating the migration effect as a result of transitions between the [TT] state of coupled T-excitons (at small TT-distances r) and the [T+T]-state of freely migrating T-excitons (at large distances r), as well as the free migration model (FMM), neglecting the effect of the [TT] state. Within the TSM and FMM, the expressions for ps(t) are derived, which are applied to describe the KDF \(p_{s}^{{{\text{exp}}}}\left( t \right)\), measured in amorphous rubrene films. Within the experimentally investigated range of times, 0.4–200 ns, the TSM is shown to reproduce the behavior of the experimental KDF \(p_{s}^{{{\text{exp}}}}\left( t \right)\) much more accurately than the FMM. At longer times t \( \gtrsim {\kern 1pt} \) 103 ns, a substantial difference (\( \gtrsim {\kern 1pt} 25\% \)) between \(p_{s}^{{{\text{exp}}}}\left( t \right)\) and the FMM-predicted KDF ps(t) is found, which is far beyond the experimental error (\( \lesssim \)3%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. M. B. Smith and J. Michl, Annu. Rev. Phys. Chem. 64, 361 (2013). https://doi.org/10.1146/annurev-physchem-040412-110130

    Article  CAS  PubMed  Google Scholar 

  2. D. Casanova, Chem. Rev. 118, 7164 (2018). https://doi.org/10.1021/acs.chemrev.7b00601

    Article  CAS  PubMed  Google Scholar 

  3. K. Miyata, F. S. Conrad-Burton, F. L. Geyer, et al., Chem. Rev. 119, 4261 (2019). doihttps://doi.org/10.1021/acs.chemrev.8b00572

    Article  CAS  PubMed  Google Scholar 

  4. R. E. Merrifield, J. Chem. Phys. 48, 4318 (1968). https://doi.org/10.1063/1.1669777

    Article  CAS  Google Scholar 

  5. A. Suna, Phys. Rev. B 1, 1716 (1970). https://doi.org/10.1103/PhysRevB.1.1716

    Article  Google Scholar 

  6. S. N. Konyaev, A. I. Shushin, L. I. Kolesnikova, et al., Phys. Status Solidi B 142, 461 (1987).

    Article  CAS  Google Scholar 

  7. V. V. Tarasov, G. E. Zoriniants, A. I. Shushin, et al., Chem. Phys. Lett. 267, 58 (1997). https://doi.org/10.1016/S0009-2614(97)00056-0

    Article  CAS  Google Scholar 

  8. A. S. Vetchinkin, S. Ya. Umanskii, Ju. A. Chaikina, et al., Khim. Fiz. 41 (9), 72 (2022). https://doi.org/10.31857/S0207401X22090102

    Article  Google Scholar 

  9. A. Ryansnyanskiy and I. Biaggio, Phys. Rev. B 84, 193203 (2011). https://doi.org/10.1103/PhysRevB.84.193203

    Article  CAS  Google Scholar 

  10. A. I. Shushin, J. Chem. Phys. 156, 074703 (2022). https://doi.org/10.1063/5.0078158

    Article  CAS  PubMed  Google Scholar 

  11. G. B. Piland, J. J. Burdett, D. Kurunthu, et al., J. Phys. Chem. C 117, 1224 (2013). https://doi.org/10.1021/jp309286v

    Article  CAS  Google Scholar 

  12. A. I. Shushin, J. Phys. Chem. B 11, 887 (2017). https://doi.org/10.7868/S0207401X17110085

    Article  CAS  Google Scholar 

  13. G. B. Pilland, J. Burdett, R. J. Dillon, et al., J. Phys. Chem. Lett. 5, 2312 (2014). .https://doi.org/10.1021/jz500676c

    Article  CAS  Google Scholar 

  14. A. I. Shushin, Chem. Phys. Lett. 118, 197 (1985). https://doi.org/10.1016/0009-2614(85)85297-0

    Article  CAS  Google Scholar 

  15. A. I. Shushin, J. Chem. Phys. 95, 3657 (1991). https://doi.org/10.1063/1.460817

    Article  CAS  Google Scholar 

  16. A. I. Shushin, J. Chem. Phys. 97, 1954 (1992). https://doi.org/10.1063/1.463132

    Article  CAS  Google Scholar 

  17. A. L. Buchachenko, Russ. J. Phys. Chem. B 16, 9 (2022). https://doi.org/10.1134/S1990793122010031

    Article  CAS  Google Scholar 

  18. A. L. Buchachenko and D. A. Kuznetsov, Russ. J. Phys. Chem. B 15, 1 (2021). https://doi.org/10.1134/S1990793121010024

    Article  CAS  Google Scholar 

  19. A. A. Lundin and V. E. Zobov, Russ. J. Phys. Chem. B 15, 839 (2021). https://doi.org/10.31857/S0207401X21090077

    Article  CAS  Google Scholar 

  20. A. I. Shushin, Chem. Phys. Lett. 678, 283 (2017). https://doi.org/10.1016/j.cplett.2017.04.068

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out with financial support from the Russian Ministry of Science and Higher Education as part of a state assignment (topic no. AAAA-A19-119012890064-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Shushin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shushin, A.I., Umanskii, S.Y. & Chaikina, J.A. Kinetics of the Decay of Excited Singlet State into a Pair of T-Excitons in Rubrene Films: Mechanism and Manifestation of Exciton Migration. Russ. J. Phys. Chem. B 17, 1403–1408 (2023). https://doi.org/10.1134/S1990793123060210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123060210

Keywords:

Navigation