Skip to main content
Log in

Empirical Model of the Charge Carriers’ Photogeneration in Organic Solar Cells

  • ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A model of the photocurrent generation of charge carriers in blends of donor (D) and acceptor (A) materials structured on the nanoscale is considered. The absorption of a quantum of light in one of these materials creates a molecular exciton, which can reach the interface between the D and A phases and form an interfacial charge transfer (CT) exciton on this interface, which dissociates into an electron-hole pair. The probabilities of the dissociation of CT excitons into free current carriers are calculated as a function of the electric field and the thermalization length of the electron-hole pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J.-L. Brédas, J. E. Norton, J. Cornil, V. Coropceany, Acc. Chem. Res. 42, 1691–1699 (2009).

    Article  PubMed  Google Scholar 

  2. T. M. Clarke, J. R. Durrant, Chem. Rev. 110, 6736–6767 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. E. L. Aleksandrova, Semiconductors. 38, 1153–1194 (2004).

    Google Scholar 

  4. A. Yu. Sosorev, D. Yu. Paraschuk, Isr. J. Chem. 54, 650–673 (2014).

    Article  CAS  Google Scholar 

  5. A. Yu. Sosorev, D. Yu. Godovsky, D. Yu. Paraschuk, Phys. Chem. Chem. Phys. 20, 3658–3671 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. K. Vandewal, Annu. Rev. Phys. Chem. 67, 113–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, Science. 335, 1340–1344 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, L. Mcculloch, J. Nelson, D.D.C. Bradley, J. R. Durrant, J. Am. Chem. Soc. 130, 3030–3042 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, R. H. Friend, Science 343, 512 –516 (2014).

    Article  PubMed  Google Scholar 

  10. S. D. Dimitrov, A. A. Bakulin, C. B. Nielsen, B. C. Schroeder, J. Du, H. Bronstein, I. McCulloch, R. H. Friend, J. R. Durrant, J. Am. Chem. Soc. 134, 18189–18192 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. S. D. Dimitrov, J. R. Durrant, Chem. Mater. 26, 616–630 (2014).

    Article  CAS  Google Scholar 

  12. S. Shoaee, S. Subramaniyan, H. Xin, C. Keiderling, P. S. Tuladhar, F. Jamieson, S. A. Jenekhe, J. R. Durrant, Adv. Funct. Mater. 23, 3286–3298 (2013).

    Article  CAS  Google Scholar 

  13. M. Wiemer, A. V. Nenashev, F. Jansson, S. D. Baranovskii, Appl. Phys. Lett. 99, 013302 (2011). https://doi.org/10.1063/1.3607481

    Article  CAS  Google Scholar 

  14. S. D. Baranovskii, M. Wiemer, A.V. Nenashev, F. Jansson, F. Gebhard, J. Phys. Chem. Lett. 3, 1214–1221 (2012). https://doi.org/10.1021/jz300123k

    Article  CAS  Google Scholar 

  15. S. Tscheuschner, H. Bässler, K. Huber, A. Köhler, J. Phys. Chem. B. 119, 10359–10371 (2015). https://doi.org/10.1021/acs.jpcb.5b05138

    Article  CAS  PubMed  Google Scholar 

  16. L. V. Lukin, Chem. Phys. 551, 111327 (2021). https://doi.org/10.1016/j.chemphys.2021.111327

    Article  CAS  Google Scholar 

  17. M. Wojcik, M. Tachiya, Chem. Phys. Lett. 537, 58–61 (2012).

    Article  CAS  Google Scholar 

  18. J. D. Servaites, B. M. Savoie, J. B. Brink, T. J. Marks, M. A. Ratner, Energy Environ. Sci. 5, 8343–8350 (2012).

    Article  CAS  Google Scholar 

  19. M. Hilczer, M. Tachiya, J. Phys. Chem. C. 114, 6808–6813 (2010).

    Article  CAS  Google Scholar 

  20. V. A. Trukhanov, V. V. Bruevich, D. Y. Paraschuk, Phys. Rev. B: Condens. Matter Mater. Phys. 84, 205318 (2011).

    Article  Google Scholar 

  21. L. Onsager, Phys. Rev. 54, 554–557 (1938).

    Article  CAS  Google Scholar 

  22. E. A. Silinsh, V. A. Kolesnikov, I. J. Muzikante, D. R. Balode, phys. stat. sol. (b). 113, 379–393 (1982).

  23. E. A. Silinsh, V. Čápek, Organic molecular crystals. Interaction, localization and transport phenomena. New York: AIP Press (1994).

    Google Scholar 

  24. H. Sano, A. Mozumder, J. Chem. Phys. 66, 689–698 (1977).

    Article  CAS  Google Scholar 

  25. D.A. Vithanage, A. Devižis, V. Abramavičius, Y. Infahsaeng, D. Abramavičius et al., Nat. Commun. 4, Article number 2334 (2013).

    Article  Google Scholar 

  26. A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, V. Gulbinas, M. Kemerink, Adv. Energy Mater. 7, 1602143 (2017).

    Article  Google Scholar 

  27. A. Melianas, M. Kemerink, Adv. Mater. 31, 1806004 (2019).

    Article  Google Scholar 

  28. S. D. Baranovski, T. Faber, F. Hensel, P. Thomas, J. Non-Cryst. Solids. 227–230, 158 -161 (1998).

    Article  Google Scholar 

  29. D. Caruso, A. Troisi, Proc. Natl. Acad. Sci. U.S.A. 109, 13498–13502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. A. Rice, Diffusion-limited reactions. Amsterdam: Elsevier (1985).

    Google Scholar 

  31. K. M. Hong, J. Noolandi, J. Chem. Phys. 68, 5163–5171 (1978).

    Article  CAS  Google Scholar 

  32. K. M. Hong, J. Noolandi, J. Chem. Phys. 69, 5026–5035 (1978).

    Article  CAS  Google Scholar 

  33. J. Noolandi, K.M. Hong, J. Chem. Phys. 70, 3230–3236 (1979).

    Article  CAS  Google Scholar 

  34. M. A. Loi, S. Toffani, M. Muccini, M. Forster, U. Scherf, M. Scharber, Advan. Funct. Mater. 17, 2111–2116 (2007).

    Article  CAS  Google Scholar 

  35. C. Piliego, M. A. Loi, J. Mater. Chem. 22, 4141–4150 (2012).

    Article  CAS  Google Scholar 

  36. K. Seki, M. Wojcik, J. Phys. Chem. C. 121, 3632–3641 (2017).

    Article  CAS  Google Scholar 

  37. D. Mauzerall, S. G. Ballard, Annu. Rev. Phys. Chem. 33, 377–407 (1982).

    Article  CAS  Google Scholar 

  38. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Sci. Technol. Adv. Materials. 4, 371–375 (2003).

    Article  CAS  Google Scholar 

  39. A. Devižis, D. Hertel, K. Meerholz, V. Gulbinas, J.‑E. Moser, Organic Electronics. 15, 3729–3734 (2014).

    Article  Google Scholar 

  40. V. D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, M. M. Wienk, Advan. Funct. Mater. 13, 43–46 (2003).

    Article  CAS  Google Scholar 

  41. T. E. Goliber, J. H. Peristein, J. Chem. Phys. 80, 4162–4167 (1984).

    Article  CAS  Google Scholar 

  42. Y. Wang, A. Suna, J. Phys. Chem. B. 101, 5627–5638 (1997).

    Article  CAS  Google Scholar 

  43. C. Leng, H. Qin, Y. Si, Y. Zhao, J. Phys. Chem. C. 118, 1843–1855 (2014).

    Article  CAS  Google Scholar 

  44. B. P. Karsten, R. K. M. Bouwer, J. C. Hummelen, R. M. Williams, R. A. J. Janssen, Photochem. Photobiol. Sci. 9, 1055–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Y. Kawashima, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A. 117, 6737–6743 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. A. Yu. Shaulov, L. V. Vladimirov, A. V. Grachev et al., Russ. J. Phys. Chem. B: Focus on Physics, 14, 183 (2020). https://doi.org/10.1134/S1990793120010157

    Article  CAS  Google Scholar 

  47. G. V. Simbirtseva, N. P. Piven’, S. D. Babenko, Russ. J. Phys. Chem. B: Focus on Physics, 14, 980–985 (2020). https://doi.org/10.1134/S1990793120060287

    Article  CAS  Google Scholar 

  48. G. V. Simbirtseva, N. P. Piven’, S. D. Babenko, Russ. J. Phys. Chem. B: Focus on Physics, 16, 323–328 (2022). https://doi.org/10.1134/S1990793122020233

    Article  CAS  Google Scholar 

  49. G. N. Gerasimov, V. F. Gromov, M. I. Ikim, L. I. Trakhtenberg, Russ. J. Phys. Chem. B: Focus on Physics, 15, 1072–1083 (2021). https://doi.org/10.1134/S1990793121060038

    Article  CAS  Google Scholar 

  50. J. Terlecki, J. Fiutak, Int. J. Radiat. Phys. Chem. 4, 469–478 (1972).

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out as part of a state assignment of the Russian Ministry of Science and Higher Education (topic no. 122040500074-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Lukin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukin, L.V. Empirical Model of the Charge Carriers’ Photogeneration in Organic Solar Cells. Russ. J. Phys. Chem. B 17, 1300–1308 (2023). https://doi.org/10.1134/S1990793123060180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123060180

Keywords:

Navigation