Skip to main content
Log in

The Mutual Influence of the Turbulence Coefficient and Reynolds Number on the Formation of a Turbulent Process: 2. Existing Scenarios for the Occurrence and Development of Turbulence

  • DYNAMICS OF TRANSPORT PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Some characteristic features of three scenarios for the occurrence and development of turbulence are presented: the Landau–Hopf scenario, the scenario of transition to turbulence on a strange attractor, and the scenario followed by the solutions of the multimoment hydrodynamics equations. The analysis of the presented characteristic features allows us to draw a conclusion about the possibility of using these scenarios for the interpretation of turbulence. It is shown that only one of the scenarios satisfactorily interprets the experimental data: the scenario followed by the solutions of the multimoment hydrodynamics equations supplemented with stochastic components. The Landau–Hopf scenario leads to a system that has lost stability in the wrong direction. The scenario of the transition to turbulence on a strange attractor correctly reproduces only the initial stage of the evolution of the liquid layer in the Bénard experiment, namely, heat transfer in the resting layer and convective rolls. Analysis of the behavior of solutions of the Lorentz model leaves no hope for the ability of this scenario to interpret turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. S. Betev, A. D. Kiverin, S. P. Medvedev and I. S. Yakovenko, Russ. J. Phys. Chem. B 14 (6), 940 (2020).

    Article  CAS  Google Scholar 

  2. P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, New York, 2006).

    Google Scholar 

  3. M. D. Chekroun, E. Simonnet, and M. Ghil, Physica D 240, 1685 (2011).

    Article  Google Scholar 

  4. J. Carvalho and A. A. Rodrigue, Physica D 434, 133268 (2022).

    Article  Google Scholar 

  5. D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971).

    Article  Google Scholar 

  6. I. V. Lebed, The Foundations of Multimoment Hydrodynamics, Part 1: Ideas, Methods and Equations (Nova Science Publishers, New York, 2018).

    Google Scholar 

  7. A. Ph. Kiselev and I. V. Lebed, Chaos, Solitons and Fractals 142, 110491 (2021). https://doi.org/10.1016/j.chaos.2020.110491

    Article  Google Scholar 

  8. A. Ph. Kiselev and I. V. Lebed, Russ. J. Phys. Chem. B 15 (1), 189 (2021). https://doi.org/10.1134/S199079312101005X

    Article  CAS  Google Scholar 

  9. A. Ph. Kiselev and I. V. Lebed, Russ. J. Phys. Chem. B 15 (5), 895 (2021). https://doi.org/10.1134/S1990793121030222

    Article  CAS  Google Scholar 

  10. I. V. Lebed and S. Y. Umanskii, Russ. J. Phys. Chem. B 1 (1), 52 (2007). https://doi.org/10.1134/S1990793107010071

    Article  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics 6: Hydrodynamics (Nauka, Moscow, 1986).

    Google Scholar 

  12. R. Natarajan and A. Acrivos, J. Fluid Mech. 254, 323 (1993). https://doi.org/10.1017/S0022112093002150

    Article  CAS  Google Scholar 

  13. A. G. Tomboulides and S. A. Orszag, J. Fluid Mech. 416, 45 (2000). https://doi.org/10.1017/S0022112000008880

    Article  CAS  Google Scholar 

  14. K. Hannemann and H. Oertel, Jr., J. Fluid Mech. 199, 55 (1989). https://doi.org/10.1017/S0022112089000297

    Article  Google Scholar 

  15. H. G. Schuster, Deterministic Chaos (Physik Verlag, Weinheim, 1984).

    Google Scholar 

  16. J. Nikurads, “The laws of turbulent flow in smooth pipes,” in The Problems of Turbulence, Ed. by M. A. Velikanov and N. T. Shveikovsky (ONTI, Leningrad–Moscow, 1936), pp. 75–150.

    Google Scholar 

  17. J. M. Chomaz, P. Bonneton and E. J. Hopfinger, J. Fluid Mech. 234, 1 (1993). https://doi.org/10.1017/S0022112093002009

    Article  Google Scholar 

  18. H. Sakamoto, H. Haniu, J. Fluid Mech. 287, 151 (1995). https://doi.org/10.1017/S0022112095000905

    Article  Google Scholar 

  19. I. V. Lebed, Chem. Phys. Rep. 16 (7), 1263 (1997).

    Google Scholar 

  20. I. V. Lebed, Russ. J. Phys. Chem. B 8 (2), 240 (2014). https://doi.org/10.1134/S1990793114020171

    Article  CAS  Google Scholar 

  21. I. V. Lebed, Russ. J. Phys. Chem. B 16 (1), 197 (2022). https://doi.org/10.1134/S1990793122010092

    Article  CAS  Google Scholar 

  22. I. V. Lebed, Russ. J. Phys. Chem. B 16 (2), 370 (2022). https://doi.org/10.1134/S199079312202018X

    Article  CAS  Google Scholar 

  23. I. V. Lebed, Russ. J. Phys. Chem. B 17 (2023) (in press).

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lebed.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebed, I.V. The Mutual Influence of the Turbulence Coefficient and Reynolds Number on the Formation of a Turbulent Process: 2. Existing Scenarios for the Occurrence and Development of Turbulence. Russ. J. Phys. Chem. B 17, 1414–1421 (2023). https://doi.org/10.1134/S1990793123060179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123060179

Keywords:

Navigation