Skip to main content
Log in

Influence of Internal Microarchitecture on the Shape of Individual Implants Made from Vinylidene Fluoride Copolymer by 3D Printing with High-Temperature Crystallization

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The healing potential of individual polymer implants for the reconstruction of extensive craniofacial defects after cancer resection is largely determined by the internal architecture of the implant. The architecture of an implant during polymer crystallization could affect the structure and shape of the implant at the micro and macro levels. In this study, the relationship between the internal architecture (triply periodic minimum surface structure (gyroid), cube, grid, and honeycomb) and shape changes of individual implants by 3D printing with a vinylidene fluoride-tetrafluoroethylene copolymer after crystallization is examined at a filling density of 70%. Using the method of differential scanning calorimetry, it is established that crystallization leads to the rearrangement of the crystalline structure of the implant into electrically active (ferroelectric) crystalline phases. Moreover, the type of internal architecture affects the change in the shape of the implant after crystallization. The results of the computed tomography show that structures with a triply periodic minimum surface (gyroid) provide the minimal deformation of the implant during crystallization, which makes such structures optimal for manufacturing implants for replacing bone defects in the zygomatic-orbital complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. D. E. Kulbakin, E. L. Choynzonov, S. P. Buyakova, et al., Head and Neck Russ. J. 6, 64 (2018). https://doi.org/10.25792/HN.2018.6.4.64-69

    Article  Google Scholar 

  2. A. M. Zhukov, V. I. Solodilov, I. V. Tretyakov, et al., Russ. J. Phys. Chem. B 16, 926 (2022). https://doi.org/10.1134/S199079312205013X

    Article  CAS  Google Scholar 

  3. T. A. Ivanova and E. N. Golubeva, Russ. J. Phys. Chem. B 16, 426 (2022). https://doi.org/10.1134/S1990793122030162

    Article  CAS  Google Scholar 

  4. Yu. V. Tertyshnaya, A. V. Lobanov, and A. V. Khvatov, Russ. J. Phys. Chem. B 14, 1022 (2020). https://doi.org/10.1134/S1990793120060135

    Article  CAS  Google Scholar 

  5. A. D. Badaraev, A. Koniaeva, S. A. Krikova, et al., Appl-. Surf. Sci. 504 (2020). https://doi.org/10.1016/j.apsusc.2019.144068

  6. I. O. Akimchenko, et al., Appl. Phys. Lett. 119 (2021). https://doi.org/10.1063/5.0070365

  7. K. Kapat, Q. T. H. Shubhra, M. Zhou, et al., Adv. Funct. Mater. 30 (2020). https://doi.org/10.1002/adfm.201909045

  8. V. V. Kochervinskii, Russ. Chem. Rev. 65, 936 (1996). doi iopscience.iop.org/0036-021X/65/10/R03

  9. Y. Li, S. Tang, M. W. Pan, et al., Macromolecules 48, 8565 (2015). https://doi.org/10.1021/acs.macromol.5b01895

    Article  CAS  Google Scholar 

  10. M. Inoue, Y. Tada, K. Suganuma, et al., Polym. Degrad. Stabil. 92, 1833 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.003

    Article  CAS  Google Scholar 

  11. A. J. Lovinger, G. E. Johnson, H. E. Bair, et al., J. Ap-pl. Phys. 56, 2412 (1984). https://doi.org/10.1063/1.334303

    Article  CAS  Google Scholar 

  12. Y. Murata, Polym. J. 19, 337 (1987). https://doi.org/10.1295/polymj.19.337

    Article  CAS  Google Scholar 

  13. A. V. Rammohan, T. Lee, and V. B. C. Tan, Int. J. Appl. Mech. 7, 1550048 (2015). https://doi.org/10.1142/S1758825115500489

    Article  Google Scholar 

  14. Z. Dong and X. Zhao, Eng. Regen. 2, 154 (2021). https://doi.org/10.1016/j.engreg.2021.09.004

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Ministry of Science and Higher Education (Science project FSWW-2023-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Bolbasov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyev, A.O., Kulbakin, D.E., Chistyakov, S.G. et al. Influence of Internal Microarchitecture on the Shape of Individual Implants Made from Vinylidene Fluoride Copolymer by 3D Printing with High-Temperature Crystallization. Russ. J. Phys. Chem. B 17, 1316–1322 (2023). https://doi.org/10.1134/S1990793123060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123060106

Keywords:

Navigation