Skip to main content
Log in

Low-Molecular Fluoropolymers: Structure and Thermal Properties

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The main representatives of low-molecular-weight fluoropolymers obtained by the thermogasdynamic method of polytetrafluoroethylene (PTFE) pyrolysis, radiation polymerization of tetrafluoroethylene (TFE) in various solvents, and direct fluorination of low-molecular-weight paraffins are characterized. The features of the morphology, structure, molecular chain length, and thermal properties of the polymers obtained by various methods are shown. During repeated heat treatment of low-molecular weight fluoropolymers (heating to a temperature when the process of weight loss ends), regardless of the method of obtaining the polymer, new more dispersed low-molecular-weight fluoropolymers are formed, which may not differ from the original ones (fluoroparaffins) or differ in a number of characteristics (telomers, UPTFE (PTFE converted into low-molecular ultrafine powder) fractions). A new low-molecular-weight product is formed during the pyrolytic processing of high-molecular-weight copolymers of ethylene with TFE. The product is a low-molecular-weight form of ETFE, differing from the original objects in morphology, molecular chain length, and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. V. M. Bouznik, Fluoropolymer Materials: Application in the Oil and Gas Complex (Oil and Gas, Moscow, 2009) [in Russian].

    Google Scholar 

  2. V. M. Bouznik, Russ. Nanotechnol. 4, 35 (2009).

    Google Scholar 

  3. R. C. Smykovskaya, O. P. Kyznetsova, T. I. Medintseva, et al., Russ. J. Phys. Chem. B 16, 346 (2022). https://doi.org/10.1134/S1990793122010298

    Article  CAS  Google Scholar 

  4. V. M. Bouznik, Fluoropolymer Materials (NTL, Tomsk, 2017) [in Russian].

    Google Scholar 

  5. A. Yu. Shaulov, L. V. Vladimirov, A. V. Grachev, et al., Russ. J. Phys. Chem. B 14, 183 (2020). https://doi.org/10.1134/S1990793120010157

    Article  CAS  Google Scholar 

  6. A. Xu, W. Z. Yuan, H. Zhang, et al., Polym. Int. 61, 901 (2012). https://doi.org/10.1002/pi.4157

    Article  CAS  Google Scholar 

  7. T. Yamanaka, M. Tsuji, et al., Patent EP 2 415 788 B1, Bull. 2014/18 (2014).

  8. A. K. Tsvetnikov and A. A. Uminsky, Patent 1775419 RF. MKI 5C08J 11/04 (1993).

  9. Trademark “FORUM” No. 140123 of the Russian Federation, registered on March 29, 1996.

  10. V. M. Bouznik, L. N. Ignatieva, V. G. Kyriaviy, et al., KONA Powder Particle J. 26, 3 (2008). https://doi.org/10.14356/kona.2008005

    Article  CAS  Google Scholar 

  11. V. M. Bouznik, Ultrafine and Nanoscale Powders: Creation, Structure, Production and Application (NTL, Tomsk, 2009) [in Russian].

    Google Scholar 

  12. A. K. Tsvetnikov, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk 2, 18 (2009).

    Google Scholar 

  13. V. M. Bouznik, A. K. Tsvetnikov, B. Yu. Shikunov, et al., Perspect. Mater. 2, 89 (2002).

    Google Scholar 

  14. V. M. Bouznik, Metal-Polymer Nanocomposites (Obtaining, Properties, Application) (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  15. L. N. Ignatieva, A. K. Tsvetnikov, A. N. Livshits, et al., J. Struct. Chem. 43, 64 (2002). https://doi.org/10.1023/A:1016069715573

    Article  CAS  Google Scholar 

  16. L. N. Ignatieva, V. M. Bouznik, Russ. Chem. J. 52, 139 (2008).

    Google Scholar 

  17. V. M. Volokhov, T. S. Zyubina, A. V. Volokhov, et al., Russ. J. Phys. Chem. B 15, 12 (2021). https://doi.org/10.31857/S0207401X21010131

    Article  CAS  Google Scholar 

  18. L. N. Ignatieva and V. M. Bouznik, Russ. J. Phys. Chem. A 79, 1631 (2005).

    Google Scholar 

  19. U. Lappan, U. Geissler, and K. Lunkwitz, J. Appl. Polym. Sci. 74, 1571 (1999). https://doi.org/10.1002/(SICI)1097-4628

    Article  CAS  Google Scholar 

  20. U. Lappan, U. Geissler, and K. Lunkwitz, Radiat. Phys. Chem. 59, 317 (2000). https://doi.org/10.1016/S0969-806X(00)00269-3

    Article  CAS  Google Scholar 

  21. I. Dehant, R. Danz, and V. Kimmer, Infrared Spectroscopy of Polymers (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  22. O. M. Gorbenko, L. N. Ignatieva, D. V. Mashtalyar, et al., Mater. Technol. Tools 14, 27 (2009).

    CAS  Google Scholar 

  23. L. N. Ignatieva, O. M. Gorbenko, V. G. Kuryavyi, et al., Macromol. Indian J. 7, 6 (2011).

    CAS  Google Scholar 

  24. L. N. Ignatieva, O. M. Gorbenko, V. G. Kuryavyi, et al., J. Fluor. Chem. 156, 246 (2013). https://doi.org/10.1016/j.jfluchem.2013.06.012

    Article  CAS  Google Scholar 

  25. L. N. Ignatieva, V. A. Mashchenko, O. M. Gorbenko, et al., AIP Conf. Proc. 1981, 020166-1 (2018). https://doi.org/10.1063/1.5046028

    Article  CAS  Google Scholar 

  26. L. N. Ignatieva and V. A. Mashchenko, Polym. Eng. Sci. 59, 2413 (2019). https://doi.org/10.1002/pen.25129

    Article  CAS  Google Scholar 

  27. L. N. Ignatieva and V. M. Bouznik, Russ. J. Struct. Chem. 57, 940 (2016). https://doi.org/10.15372/JSC20160507

    Article  Google Scholar 

  28. N. I. Nefedov, M. A. Guseva, M. A. Khaskov, et al., Polym. Sci. A 59, 496 (2017). https://doi.org/10.7868/52308112017040034

    Article  CAS  Google Scholar 

  29. L. N. Ignatieva, V. M. Bouznik, J. Fluor. Chem. 144, 17 (2012). https://doi.org/10.1016/j.jfluchem.2012.09.008

    Article  CAS  Google Scholar 

  30. L. N. Ignatieva and V. M. Bouznik, J. Fluor. Chem. 132, 734 (2011). https://doi.org/10.1016/j.jfluchem.2011.05.021

    Article  CAS  Google Scholar 

  31. S. Ikeda, Y. Tabata, W. Ito, et al., J. Macromol. Sci. Part A 4, 815 (1970). https://doi.org/10.1080/00222337008060981s

    Article  Google Scholar 

  32. S. Ikeda, Y. Tabata, H. Suzuki, et al., Radiat. Phys. Chem. 77, 1050 (2008). https://doi.org/10.1016/j.radphyschem.2008.04.003

    Article  CAS  Google Scholar 

  33. D. P. Kiryukhin, T. I. Nevelskaya, I. P. Kim, et al., Polym. Sci. A 24, 307 (1982).

    CAS  Google Scholar 

  34. D. P. Kiryukhin, G. A. Kichigina, and V. M. Bouznik, Polym. Sci. A 55, 1321 (2013). https://doi.org/10.7868/S0507547513110019

    Article  Google Scholar 

  35. D. P. Kiryukhin, G. A. Kichigina, P. P. Kushch, et al., Izv. Akad. Nauk, Ser. Khim. 7, 1659 (2013). https://doi.org/10.1007/s11172-013-0240-9

    Article  CAS  Google Scholar 

  36. D. P. Kiryukhin, T. I. Nevelskaya, I. M. Barkalov, and V. I. Gol’danskii, RF Patent 665747 A1 (1976).

  37. G. A. Kichigina, P. P. Kushch, D. P. Kiryukhin et al., High Energy Chem. 55, 388 (2021). https://doi.org/10.1134/S0018143921050064

    Article  CAS  Google Scholar 

  38. A. A. Strepikheev, V. A. Derevitskaya, and G. L. Slonimsky, Fundamentals of Chemistry of Macromolecular Compounds (Khimiya, Moscow, 1967).

    Google Scholar 

  39. V. M. Bouznik, L. N. Ignatieva, T. A. Kaidalova, et al., Polym. Sci. A 50, 1641 (2008).

    Article  Google Scholar 

  40. D. P. Kiryukhin, I. P. Kim, V. M. Buznik, et al., Russ. Chem. J. 52, 66 (2008).

    CAS  Google Scholar 

  41. D. P. Kiryukhin, I. P. Kim, and V. M. Bouznik, RF Patent 2381237 (2010).

  42. A. I. Bolshakov, G. A. Kichigina, and D. P. Kiryukhin, High Energy Chem. 43, 456 (2009). https://doi.org/10.1134/S0018143909060071

    Article  CAS  Google Scholar 

  43. A. I. Bolshakov, G. A. Kichigina, P. P. Kushch, et al., High Energy Chem. 45, 481 (2011). https://doi.org/10.1134/S0018143911060063

    Article  CAS  Google Scholar 

  44. L. N. Ignatieva, V. A. Mashchenko, D. P. Kiryukhin, et al., J. Fluor. Chem. 242, 109699 (2021). https://doi.org/10.1016/j.jfluchem.2020.109699

    Article  CAS  Google Scholar 

  45. Yu. M. Shulga, E. N. Kabachkov, V. I. Korepanov, et al., High Energy Chem. 56, 130 (2022). https://doi.org/10.31857/S0023119321040124

    Article  Google Scholar 

  46. G. Pompe, U. Lappan, and L. Hausler, Thermochem. Acta 391, 257 (2002). https://doi.org/10.1016/S0040-6031(02)00188-0

    Article  CAS  Google Scholar 

  47. L. N. Ignatieva, A. K. Tsvetnikov, O. M. Gorbenko, et al., J. Struct. Chem. 45, 830 (2004). https://doi.org/10.1007/s10947-005-0059-9

    Article  CAS  Google Scholar 

  48. V. M. Buznik, Yu. E. Vopilov, G. Yu. Yurkov, et al., Polym. Sci. Ser. A 57, 415 (2015). https://doi.org/10.7868/S23008112015040045

    Article  CAS  Google Scholar 

  49. B. N. Maksimov, V. G. Barabanov, I. L. Serushkin, et al., Industrial Organofluorine Products. Reference Book (Khimiya, Leningrad, 1996) [in Russian].

    Google Scholar 

  50. N. I. Nefedov, Abstract of Candidate’s Dissertation in Engineering (FGUP VIAM State Scientific Center of the Russian Federation, Moscow, 2017).

  51. A. P. Kharitonov and Yu. L. Moskvin, Khim. Fiz. 13, 44 (1994).

    CAS  Google Scholar 

  52. V. G. Nazarov, I. V. Nagornova, V. P. Stolyarov, et al., Russ. J. Phys. Chem. B 12, 1066 (2018). https://doi.org/10.1134/S1990793118060088

    Article  CAS  Google Scholar 

  53. A. P. Kharitonov, Chem. Sustainable Dev. 12, 643 (2004).

    CAS  Google Scholar 

  54. L. N. Ignatieva, V. A. Mashchenko, Yu. V. Marchenko, et al., Indian J. Phys. 97, 2077 (2022). https://doi.org/10.1007/s12648-022-02561-3

    Article  CAS  Google Scholar 

  55. B. Ameduri and B. Boutevin, Well-Architectured Fluoropolymers: Synthesis, Properties and Applications (Elsevier, New York, 2004). https://doi.org/10.1002/macp.200600318

    Book  Google Scholar 

  56. T. Mukherjee, S. Rimal, S. Koskey, et al., Solid State Lett. 2, 11 (2013). https://doi.org/10.1149/2.008303ssl

    Article  CAS  Google Scholar 

  57. J. Mihály, S. Sterkel, M. Hugo, et al., Croatica Chem. Acta 79, 497 (2006).

    Google Scholar 

  58. A. I. Kitaygorodsky, Crystallography 2, 456 (1957).

    Google Scholar 

  59. A. I. Kitaygorodsky, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  60. Yu. A. Lebedev, Yu. M. Korolev, A. V. Rebrov, et al., Crystallography 55, 657 (2010).

    Google Scholar 

  61. Yu. A. Lebedev, Yu. M. Korolev, V.M. Polikarpov, et al., Crystallography 55, 651 (2010).

    Google Scholar 

  62. N. M. Livanova, V. A. Hazova, E. S. Pravada, et al., Russ. J. Phys. Chem. B 16, 756 (2022). https://doi.org/10.1134/S1990793122040108

    Article  CAS  Google Scholar 

  63. A. K. Pugachev, Russ. Chem. J. 52, 5 (2008).

    CAS  Google Scholar 

  64. M. A. Okorokova, D. Yu. Steshenko, Stud. Arct. Forum. 8, 1 (2017). https://doi.org/10.15393/j102.art.2017.2304

  65. L. N. Ignatieva, V. A. Mashchenko, G. A. Zverev, et al., J. Fluor. Chem. 231, 109460 (2020). https://doi.org/10.1016/j.jfluchem.2020.109460

    Article  CAS  Google Scholar 

  66. D. H. Simons, Fluorine Chemistry (Academic Press, New York, 1956).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Ignatieva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatieva, L.N., Mashchenko, V.A., Gorbenko, O.M. et al. Low-Molecular Fluoropolymers: Structure and Thermal Properties. Russ. J. Phys. Chem. B 17, 1330–1345 (2023). https://doi.org/10.1134/S1990793123060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123060039

Keywords:

Navigation