Skip to main content
Log in

The Equilibrium Geometries and Optical Properties of Cyanidin, Peonidin, and their Monoglycoside Including the Solvent Effect for Dye-Sensitized Solar Cell

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Computational studies of cyanidin and peonidin, and related anthocyanin: cyanidin-3-O glucoside (cya-3-O-glu) and peonidin-3-O glucoside (peo-3-O-glu) were performed to identify the dye potential in order to use in dye-sensitized solar cells (DSSCs). B3LYP/6-31+G(d, p) level of theory was used for ground state optimization and chemical properties estimation of the dyes. The absorption spectra, excited states, and optical parameters were obtained using TDDFT with the same functional and basis set. The dyes properties in water and ethanol as solvent were evaluated at the same level of theory for ground and excited states. The results have shown that the studied dyes, under the effects of solvents, can be used in DSCCs but not in the gas phase. Water and ethanol have the same effect on the chemical properties and absorption spectrum of the dyes. The hardness and ionization potential of peonidin have the lowest value. Also, light harvesting efficiency of it has the highest value. Electron injection from photoexcited dye to the conduction band of the semiconductor was done spontaneously with a negative value of ΔGinject as free energy change of electron inject process in order peo-3-O-glu < peo < cya-3-O-glu < cya. Therefore, all the studied dyes are suitable for application in DSSC technology, but peonidin and its glycoside form have higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. I. Hochbaum and P. Yang, Chem. Rev. 110, 527 (2010). https://doi.org/10.1021/cr900075v

    Article  CAS  PubMed  Google Scholar 

  2. S. R. Forrest, MRS Bull. 30, 28 (2005). https://doi.org/10.1557/mrs2005.5

    Article  CAS  Google Scholar 

  3. A. Omar, M. S. Ali, and N. Abd Rahim, Sol. Energy 207, 1088 (2020). https://doi.org/10.1016/j.solener.2020.07.028

    Article  CAS  Google Scholar 

  4. M. Grenn, Prog. Photovoltaics: Res. Appl. 19, 565 (2011).

    Article  Google Scholar 

  5. B. E. Hardin, H. J. Snaith, and M. D. McGehee, Nat. Photonics 6, 162 (2012). https://doi.org/10.1038/nphoton.2012.22

    Article  CAS  Google Scholar 

  6. J. Zhao, A. Wang, and M. A. Green, Prog. Photovoltaics: Res. Appl. 7, 471 (1999).

    Article  CAS  Google Scholar 

  7. A. Yella, H.-W. Lee, H. N. Tsao, et al., Science 334, 629 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. S. Mathew, A. Yella, P. Gao, et al., Nat. Chem. 6, 242 (2014). https://doi.org/10.1038/nchem.1861

    Article  CAS  PubMed  Google Scholar 

  9. O. I. Shevaleevskiy, A. B. Nikolskaia, M. F. Vildanova, et al., Russ. J. Phys. Chem. B 12, 663 (2018). https://doi.org/10.1134/S1990793118040334

    Article  CAS  Google Scholar 

  10. B. O’Regan and M. Grätzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  11. M. Grätzel, “Photoelectrochemical cells,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 26–32.

    Google Scholar 

  12. S. Khayatzadeh Mahani, M. Jafari Narenjbaghi, and H. F. Imam Geis, Eur. Online J. Nat. Soc. Sci.: Proc. 3, 200 (2014).

    Google Scholar 

  13. S. B. Novir and S. M. Hashemianzadeh, Mol. Phys. 114, 650 (2016). https://doi.org/10.1080/00268976.2015.1110629

    Article  CAS  Google Scholar 

  14. H. A. L. T. Abdiulrsool, F. A. L. B. Lafy, and E. H. Semiromi, Russ. J. Phys. Chem. B 15, S1 (2021). https://doi.org/10.1134/S1990793121090025

    Article  Google Scholar 

  15. E. Kavery, G. Vinodha, S. Prabhu, et al., Russ. J. Phys. Chem. B 15, S92 (2021). https://doi.org/10.1134/S1990793121090098

    Article  CAS  Google Scholar 

  16. D. Kuang, C. Klein, S. Ito, et al., Adv. Mater. 19, 1133 (2007).

    Article  CAS  Google Scholar 

  17. M. Grätzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371

    Article  CAS  PubMed  Google Scholar 

  18. Z.-S. Wang, Y. Cui, Y. Dan-oh, et al., J. Phys. Chem. C 112, 17011 (2008). https://doi.org/10.1021/jp806927b

    Article  CAS  Google Scholar 

  19. O. V. Alekseeva, S. S. Kozlov, M. L. Konstantinova, and O. I. Shevaleevskiy, Russ. J. Phys. Chem. B 15, 183 (2021). https://doi.org/10.1134/S1990793121010140

    Article  CAS  Google Scholar 

  20. K. Wongcharee, V. Meeyoo, and S. Chavadej, Sol. Energy Mater. Sol. Cells 91, 566 (2007). https://doi.org/10.1016/j.solmat.2006.11.005

    Article  CAS  Google Scholar 

  21. A. Lim, N. T. R. N. Kumara, A.L. Tan, et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 138, 596 (2015). .https://doi.org/10.1016/j.saa.2014.11.102

    Article  CAS  Google Scholar 

  22. A. Lim, N. Haji Manaf, K. Tennakoon, et al., J. Biophys. 2015 (2015).

  23. G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, Renewable Sustainable Energy Rev. 69, 705 (2017). https://doi.org/10.1016/j.rser.2016.11.198

    Article  CAS  Google Scholar 

  24. P. Ekanayake, M. R. R. Kooh, N. T. R. N. Kumara, et al., Chem. Phys. Lett. 585, 121 (2013). https://doi.org/10.1016/j.cplett.2013.08.094

    Article  CAS  Google Scholar 

  25. A. Lim, D. N. F. B. Pg Damit, and P. Ekanayake, Ionics 21, 2897 (2015). https://doi.org/10.1007/s11581-015-1489-9

    Article  CAS  Google Scholar 

  26. M. R. Narayan, Renewable Sustainable Energy Rev. 16, 208 (2012). https://doi.org/10.1016/j.rser.2011.07.148

    Article  CAS  Google Scholar 

  27. K. Tennakone, A. R. Kumarasinghe, G. R. R. A. Kumara, et al., J. Photochem. Photobiol. A: Chem. 108, 193 (1997). https://doi.org/10.1016/S1010-6030(97)00090-7

    Article  CAS  Google Scholar 

  28. M. H. Buraidah, L. P. Teo, S. N. F. Yusuf, et al., Int. J. Photoenergy 2011, 273683 (2011). https://doi.org/10.1155/2011/273683

    Article  CAS  Google Scholar 

  29. E. A. Konstantinova, E. V. Kytina, V. B. Zaitsev, et al., Russ. J. Phys.Chem. B 16, 797 (2022). https://doi.org/10.1134/S1990793122040224

    Article  CAS  Google Scholar 

  30. V. Barone, A. Ferretti, and I. Pino, Phys. Chem. Chem. Phys. 14, 16130 (2012). https://doi.org/10.1039/C2CP42657A

    Article  CAS  PubMed  Google Scholar 

  31. E. C. Prima, A. Nuruddin, B. Yuliarto, G. Kawamura, and A. Matsuda, New J. Chem. 42, 11616 (2018). https://doi.org/10.1039/C8NJ01202D

    Article  CAS  Google Scholar 

  32. A. Sinopoli, I. Citro, G. Calogero, and A. Bartolotta, Dyes Pigments 143, 291 (2017). https://doi.org/10.1016/j.dyepig.2017.04.018

    Article  CAS  Google Scholar 

  33. K. Galappaththi, A. Lim, P. Ekanayake, and M. I. Petra, Int. J. Photoenergy 2017, 8564293 (2017).

    Article  Google Scholar 

  34. E. Marcano, Energy Harvest. Syst. 5, 29 (2018). doi.https://doi.org/10.1515/ehs-2018-0008

    Article  Google Scholar 

  35. A. S. Márquez-Rodríguez, C. Grajeda-Iglesias, N.-A. Sánchez-Bojorge, et al., Molecules 23, 1587 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Z. Liu, J. Molec. Struct.: THEOCHEM 862, 44 (2008). https://doi.org/10.1016/j.theochem.2008.04.022

    Article  CAS  Google Scholar 

  37. M. Megala and B. J. M. Rajkumar, J. Comput. Electron. 15, 557 (2016). https://doi.org/10.1007/s10825-016-0791-8

    Article  CAS  Google Scholar 

  38. S. Tontapha, W. Sang-aroon, S. Kanokmedhakul, T. Promgool, and V. Amornkitbamrung, J. Mater. Sci.: Mater. Electron. 28, 7454 (2017). https://doi.org/10.1007/s10854-017-6435-3

    Article  CAS  Google Scholar 

  39. Y. El Kouari, A. Migalska-Zalas, A. K. Arof, and B. Sahraoui, Opt. Quantum Electron. 47, 1091 (2015). https://doi.org/10.1007/s11082-014-9965-4

    Article  CAS  Google Scholar 

  40. E. Cahya Prima, B. Yuliarto, and H. K. Dipojono, Adv. Mater. Res., Trans Tech. Publ. 1112, 317 (2015).

    Google Scholar 

  41. N. Y. Amogne, D. W. Ayele, and Y. A. Tsigie, Mater. Renewable Sustainable Energy 9, (2020) 23. https://doi.org/10.1007/s40243-020-00183-5

    Article  Google Scholar 

  42. P. Chaiamornnugool, S. Tontapha, R. Phatchana, et al., J. Mol. Struct. 1127, 145 (2017). https://doi.org/10.1016/j.molstruc.2016.07.086

    Article  CAS  Google Scholar 

  43. I. Iosub, F. Kajzar, M. Makowska-Janusik, A. Meghea, A. Tane, and I. Rau, Opt. Mater. 34, 1644 (2012). https://doi.org/10.1016/j.optmat.2012.03.020

    Article  CAS  Google Scholar 

  44. K. Sakata, N. Saito, and T. Honda, Tetrahedron 62, 3721 (2006). https://doi.org/10.1016/j.tet.2006.01.081

    Article  CAS  Google Scholar 

  45. R. Pop, M. Ştefănut, A. Căta, C. Tănasie, and M. Medeleanu, Open Chem. 10, 180 (2012). https://doi.org/10.2478/s11532-011-0128-1

    Article  CAS  Google Scholar 

  46. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  47. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. M. F. Gwt, H. Frisch, G. Schlegel, M. Scuseria, J. Robb, G. Cheeseman, V. Scalmani, B. Barone, G. Mennucci, and H. Petersson, Gaussian Inc., Wallingford (2009).

    Google Scholar 

  50. C.-Y. Chien and B.-D. Hsu, Sol. Energy 98 203 (2013). https://doi.org/10.1016/j.solener.2013.09.035

    Article  CAS  Google Scholar 

  51. C. L. Bentley, A. M. Bond, A. F. Hollenkamp, P. J. Mahon, and J. Zhang, J. Phys. Chem. C 119, 22392 (2015). https://doi.org/10.1021/acs.jpcc.5b07484

    Article  CAS  Google Scholar 

  52. J. B. Asbury, Y.-Q. Wang, E. Hao, H. N. Ghosh, and T. Lian, Res. Chem. Intermed. 27, 393 (2001). https://doi.org/10.1163/156856701104202255

    Article  CAS  Google Scholar 

  53. M. Planells, L. Pellejà, J. N. Clifford, et al., Energy Environ. Sci. 4, 1820 (2011). https://doi.org/10.1039/C1EE01060C

    Article  CAS  Google Scholar 

  54. T. Koopmans, Physica 1, 104 (1933).

    Article  CAS  Google Scholar 

  55. J. Cioslowski, P. Piskorz, and G. Liu, J. Chem. Phys. 107, 6804 (1997).

    Article  CAS  Google Scholar 

  56. W. Sang-aroon, S. Saekow, and V. Amornkitbamrung, J. Photochem. Photobiol. A: Chem. 236, 35 (2012). https://doi.org/10.1016/j.jphotochem.2012.03.014

    Article  CAS  Google Scholar 

  57. R. G. Pearson, Proc. Nat. Acad. Sci. 83, 8440 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. E. H. Anouar, J. Gierschner, J.-L. Duroux, and P. Trouillas, Food Chem. 131, 79 (2012). https://doi.org/10.1016/j.foodchem.2011.08.034

    Article  CAS  Google Scholar 

  59. C. R. Welch, Q. Wu, and J. E. Simon, Curr. Anal. Chem. 4, 75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. Preat, C. Michaux, D. Jacquemin, and E. A. Perpète, J. Phys. Chem. C 113, 16821 (2009). .https://doi.org/10.1021/jp904946a

    Article  CAS  Google Scholar 

  61. C.-R. Zhang, Z.-J. Liu, Y.-H. Chen, et al., Curr. Appl. Phys. 10, 77 (2010). https://doi.org/10.1016/j.cap.2009.04.018

    Article  CAS  Google Scholar 

  62. R. E. Wrolstad, E. A. Decker, S. J. Schwartz, and P. Sporns, Handbook of Food Analytical Chemistry (Wiley, New York, 2005).

    Google Scholar 

  63. L. Z. Lin, J. M. Harnly, M. S. Pastor-Corrales, and D. L. Luthria, Food Chem. 107, 399 (2008). .https://doi.org/10.1016/j.foodchem.2007.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Q. Dai and J. Rabani, J. Photochem. Photobiol. A: Chem. 148, 17 (2002). https://doi.org/10.1016/S1010-6030(02)00073-4

    Article  CAS  Google Scholar 

Download references

ACHNOWLEDGMENTS

The authors would like to thank the University of Zanjan for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tozihi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozihi, M., Zarringari, S.S. The Equilibrium Geometries and Optical Properties of Cyanidin, Peonidin, and their Monoglycoside Including the Solvent Effect for Dye-Sensitized Solar Cell. Russ. J. Phys. Chem. B 17, 1034–1048 (2023). https://doi.org/10.1134/S1990793123050123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123050123

Keywords:

Navigation