Skip to main content
Log in

Investigation of Macrokinetic Parameters of Combustion of (Ti + C)-Based Powder and Granular Mixtures: Elucidation of the Negative Activation Energy Paradox

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

For the first time, a comparative study is carried out of the macrokinetic parameters of the combustion of powder and granular mixtures of Ti + C when diluted by metal powders. The burning rates of powder mixtures (Ti + C) + 20% Me (Me = Ni, Cu) turned out to be higher than those of Ti + C mixtures, despite the lower temperature of combustion. This contradicts the theoretical models of the dependence of the combustion rate on the maximum temperature in condensed heterogeneous media. When diluting a Ti + C mixture with Ti or TiC powders, such a contradiction does not occur. The data obtained are explained using the convective-conductive model of combustion by the strong influence of the impurity gas release from titanium ahead of the combustion front. The values of the time of the transition of combustion between the granules and the burning rate of the material inside the granules, as well as a quantitative assessment of the decelerating effect of impurity gases in powder mixtures, are obtained using the values of combustion rates of the mixtures with granules of different sizes. For the (Ti + C) + 20% Ni mixture, the ignition time of the granules turned out to be less than 1 ms. The efficiency of the combustion transition between granules in the presence of a hot Ni melt is explained by comparing the combustion parameters of granular mixtures of Ti + C diluted with other metal powders and titanium carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. V. Kostin, P. M. Krishenik, and S. A. Rogachev, Russ. J. Phys. Chem. B 15 (1), 68 (2021). https://doi.org/10.1134/S1990793121010073

    Article  CAS  Google Scholar 

  2. S. Tursynbek, V. E. Zarko, O. G. Glotov, et al., Russ. J. Phys. Chem. B 14 (3), 407 (2020). https://doi.org/10.1134/S1990793120030112

    Article  CAS  Google Scholar 

  3. S. L. Silyako, V. I. Yukhvid, N. Y. Khomenko, et al., Russ. J. Phys. Chem. B 14 (5), 847 (2020). https://doi.org/10.1134/S1990793120050115

    Article  Google Scholar 

  4. N. A. Kochetov and B. S. Seplyarsky, Russ. J. Phys. Chem. B 14 (5), 791 (2020). https://doi.org/10.1134/S199079312005005X

    Article  CAS  Google Scholar 

  5. A. G. Merzhanov, A. S. Rogachev, L. M. Umarov, and N. V. Kir’yakov, Combust. Explos., Shock Waves 33, 439 (1997).

    Article  Google Scholar 

  6. V. A. Shcherbakov, A. E. Sychev, and A. S. Shteinberg, Combust. Explos., Shock Waves 22, 437 (1986).

    Article  Google Scholar 

  7. A. S. Mukas’yan, V. A. Shugaev, and N. V. Kir’yakov, Combust. Explos., Shock Waves 29, 7 (1993).

    Article  Google Scholar 

  8. O. K. Kamynina, A. S. Rogachev, and L. M. Umarov, Combust. Explos., Shock Waves 39, 548 (2003).

    Article  Google Scholar 

  9. B. S. Seplyarskii and S. G. Vadchenko, Dokl. Phys. Chem. 398, 203 (2004).

    Article  CAS  Google Scholar 

  10. A. P. Aldushin, T. M. Martem’yanova, A. G. Merzhanov, et al., Combust. Explos., Shock Waves 8, 159 (1972).

    Article  Google Scholar 

  11. S. D. Dunmead, D. W. Readey, and C. E. Semler, J. Am. Ceram. Soc. 72, 2318 (1989).

    Article  CAS  Google Scholar 

  12. A. Varma, A. S. Rogachev, A. S. Mukasyan, and S. Hwang, Adv. Chem. Eng. 24, 79 (1998)

    Article  CAS  Google Scholar 

  13. A. S. Rogachev, Int. J. Self-Propag. High-Temp. Synth. 6 (2), 215 (1997).

    CAS  Google Scholar 

  14. B. S. Seplyarskii, Dokl. Phys. Chem. 396, 130 (2004). https://doi.org/10.1023/B:DOPC.0000033505.34075.0a

    Article  CAS  Google Scholar 

  15. N. M. Rubtsov, B. S. Seplyarskii, and M. I. Alymov, Ignition and Wave Processes in Combustion of Solids (Springer International, Cham, Switzerland, 2017). https://doi.org/10.1007/978-3-319-56508-8_4

    Book  Google Scholar 

  16. B. S. Seplyarskii and R. A. Kochetkov, Int. J. Self-Propag. High-Temp. Synth. 26 (2), 134 (2017).

    Article  Google Scholar 

  17. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, and N. I. Abzalov, Combust. Explos., Shock Waves. 57 (1), 60–66 (2021). https://doi.org/10.1134/S001050822101007X

    Article  Google Scholar 

  18. V. N. Nikogosov, G. A. Nersesyan, V. A. Shcherbakov, S. L. Kharatyan, and A. S. Shteinberg, Intern. J. Self-Propag. High-Temp. Synth. 8 (3), 321 (1999).

    CAS  Google Scholar 

  19. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. M. Rubtsov, and N. I. Abzalov, Combust. Flame 236, 111811 (2022). https://doi.org/10.1016/j.combustflame.2021.111811

    Article  CAS  Google Scholar 

  20. A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, Combust. Explos., Shock Waves 17 (1), 63 (1981).

    Article  Google Scholar 

  21. T. Slezak, J. Zmywaczyk, and P. Koniorczyk, 21st AIP Conference Proceedings (2019), p. 2170. https://doi.org/10.1063/1.5132738

  22. I. A. Korol’chenko, A. V. Kazakov, and A. S. Kukhtin, Pozharovzryvobezopasnost’ 13 (4), 36 (2004).

    Google Scholar 

  23. B. M. Khusid, B. B. Khina, and E. A. Bashtova, Combust. Explos., Shock Waves. 27, 708 (1991). https://doi.org/10.1007/BF00814515

    Article  Google Scholar 

  24. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures (Metallurgy, Moscow, 1989) [in Russian].

    Google Scholar 

  25. A. G. Merzhanov, A. S. Rogachev, A. S. Mukas’yan, et al., Combust Explos., Shock Waves 26, 92 (1990). https://doi.org/10.1007/BF00742281

    Article  Google Scholar 

  26. P. Bellen, K. C. H. Kumar, and P. Wollants, Int. J. Mater. Res. 87 (12), 972 (1996). https://doi.org/10.1515/ijmr-1996-871207

    Article  CAS  Google Scholar 

  27. K. C. H. Kumar, I. Ansara, P. Wollants, and L. Delaey, Int. J. Mater. Res. 87 (8), 666 (1996). https://doi.org/10.1515/ijmr-1996-870811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Seplyarskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G. et al. Investigation of Macrokinetic Parameters of Combustion of (Ti + C)-Based Powder and Granular Mixtures: Elucidation of the Negative Activation Energy Paradox. Russ. J. Phys. Chem. B 17, 1098–1105 (2023). https://doi.org/10.1134/S199079312305010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312305010X

Keywords:

Navigation