Skip to main content
Log in

Structure of a Lean Laminar Hydrogen–Air Flame

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Numerical simulations of flame structure and laminar burning velocity SL are performed for a lean (12%) hydrogen–air mixture under standard conditions. An analysis of the concentration profiles of intermediate species shows that a change in the kinetic mechanism that controls heat release dynamics occurs with increasing temperature. Thus, heat release in the flame consists of two stages. In the region of maximum temperature gradient, the concentrations of H2O2 and HO2 reach their peak values. The subsequent decrease in H2O2 and HO2 concentrations is accompanied by a concurrent increase in H, O, and OH concentrations. Variation of the rate constants for the reactions responsible for heat release results in changes in both temperature gradient and the value of SL. The value of SL is most sensitive to the reaction in which molecular hydrogen combines with hydroxyl radical to produce water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. S. Schetinkov, Physics of Gas Combustion (Nauka, Moscow, 1965). [in Russian]

    Google Scholar 

  2. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969).

    Google Scholar 

  3. V. M. Zamanskii, and A. A. Borisov, Itogi Nauki Tekh., Ser.: Kinet. Katal. 19 (1989).

  4. A. A. Abagyan, E. O. Adamov, and E. V. Burlakov, in Proc. IAEA Int. Conf. on One Decade after Chernobyl: Nuclear Safety Aspects (Springer, Vienna, Austria, 1996), Report IAEA-J4-TC972, p. 46.

  5. G. Saji, Nucl. Eng. Des. 307, 64 (2016). https://doi.org/10.1016/j.nucengdes.2016.01.039

    Article  CAS  Google Scholar 

  6. K. S. Raman, Laminar Burning Velocities of Lean Hydrogen–Air Mixtures (Explosion Dynamics Lab., Graduate Aeronautical Labs, California Institute of Technology, Pasadena, CA, 1998), Report FM97-15.

  7. Yu. N. Shebeko, and A. Yu. Shebeko, Pozharnaya Bezopasnost’/Fire Safety 2, 106 (2014).

    Google Scholar 

  8. V. V. Azatyan, Z. S. Andrianova, A. N. Ivanova, et al., Russ. J. Phys. Chem. A. 89 (10), 1753 (2015). https://doi.org/10.1134/S0036024415100027

    Article  CAS  Google Scholar 

  9. I.S. Yakovenko, M.F. Ivanov, A.D. Kiverin, and K. S. Melnikova, Int. J. Hydrogen Energy 43, 1894 (2018).

    Article  CAS  Google Scholar 

  10. V. V. Volodin, V. V. Golub, A. D. Kiverin, K. S. Melnikova, A. Y. Mikushkin, and I. S. Yakovenko, Combust. Sci. Technol. 193 (2), 225 (2021). https://doi.org/10.1080/00102202.2020.1748606

    Article  CAS  Google Scholar 

  11. O. P. Korobeinichev, A. G. Shmakov, I. V. Rybitskaya, et al., Kinet. Catal. 50 (2), 156 (2009). https://doi.org/10.1134/S0023158409020025

    Article  CAS  Google Scholar 

  12. A.L Sanchez, and F.A. Williams, Prog. Energy Combust. Sci. 41, 1 (2014).

    Article  Google Scholar 

  13. V. V. Azatyan, Kinet. Catal. 61 (3), 319 (2020). https://doi.org/10.1134/S0023158420030039

    Article  CAS  Google Scholar 

  14. I. S. Yakovenko, I. S. Medvedkov, and A. D. Kiverin, Russ. J. Phys. Chem. B 16, 294 (2022). https://doi.org/10.1134/S1990793122020142

    Article  CAS  Google Scholar 

  15. M. Y. Hussaini, A. Kumar, and R. G. Voigt, Major Research Topics in Combustion (Springer, New York, 1992). https://doi.org/10.1007/978-1-4612-2884-4

    Book  Google Scholar 

  16. D. Bradley, M. Lawes, K. Liu, S. Verhelst, and R. Woolley, Combust. Flame 149 (1–2), 162 (2007).

    Article  CAS  Google Scholar 

  17. M. Kuznetsov, M. Czerniak, J. Grune, and T. Jordan, “Effect of temperature on laminar flame velocity for hydrogen-air mixtures at reduced pressures,” Proc. Int. Conf. Hydrogen Safety, ICHS (Springer, Brussels, Belgium, 2013), p. 1. http://www.ichs2013.com/images/papers/231.pdf.

    Google Scholar 

  18. G. Gai, S. Kudriakov, B. Rogg, A. Hadjadj, E. Studer, et al., Int. J. Hydrogen Energy 44 (31), 17015 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.225

    Article  CAS  Google Scholar 

  19. V. Alekseev, PhD Thesis (Lunds Universitet, Tryckeriet E-huset, Lund, Sweden, 2015). https://lucris.lub.lu.se/ws/files/3857462/8147100.pdf.

  20. G. T. Linteris, and V. Babushok, Proc. Combust. Inst. 32, 2535 (2009).

    Article  CAS  Google Scholar 

  21. I. E. Gerasimov, D. A. Knyazkov, A. G. Shmakov, et al., Combust. Explos. Shock Waves 47, 1 (2011). https://doi.org/10.1134/S0010508211010011

    Article  Google Scholar 

  22. V. V. Azatyan, G. R. Saikova, G. V. Balayan, et al., Russ. J. Phys. Chem. A 89, 369 (2015). https://doi.org/10.1134/S0036024415030048

    Article  CAS  Google Scholar 

  23. O. P. Korobeinichev, A. G. Shmakov, V. M. Schwarzberg, et al., Russ. J. Phys. Chem. B 15, 433 (2021). https://doi.org/10.1134/S1990793121030076

    Article  CAS  Google Scholar 

  24. T. A. Bolshova, and O. P. Korobeinichev, Combust. Explos. Shock Waves 42, 493 (2006). https://doi.org/10.1007/s10573-006-0081-z

    Article  Google Scholar 

  25. CHEMKIN-Pro 15112. CK-TUT-10112-1112-UG-1 (Reaction Design, San Diego, 2011).

  26. A. Keromnes, W. K. Metcalfe, K. A. Heufer, et al., Combust. Flame 160, 995 (2013).

    Article  CAS  Google Scholar 

  27. P. A. Vlasov, V. N. Smirnov, and A. M. Tereza, Russ. J. Phys. Chem. B 10, 456 (2016). https://doi.org/10.1134/S1990793116030283

    Article  CAS  Google Scholar 

  28. A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, A. S. Betev, S. P. Medvedev, and S. V. Khomik, Russ. J. Phys. Chem. B 16 (4), 686 (2022). https://doi.org/10.1134/S1990793122040297

    Article  CAS  Google Scholar 

  29. E. Goos, A. Burcat, and B. Ruscic, New NASA Thermodynamic Polynomials Database with Active Thermochemical Tables Updates (Argonne Natl. Labor., Tech.-Israel Inst. Technol., Chicago, IL, Tel-Aviv, 2016), Report ANL 05/20, TAE 960. http://garfield.chem.elte.hu/Burcat/burcat.html.

  30. I. S. Yakovenko, A. D. Kiverin, and K. S. Melnikova, Fluids 6, 21 (2021). https://doi.org/10.3390/fluids6010021

    Article  Google Scholar 

  31. N. N. Semenov, Chemical Kinetics and Chain Reactions (Clarendon Press, Oxford, 1935).

    Google Scholar 

Download references

Funding

This work was supported by Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, state assignment no. 122040500073-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tereza.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereza, A.M., Agafonov, G.L., Anderzhanov, E.K. et al. Structure of a Lean Laminar Hydrogen–Air Flame. Russ. J. Phys. Chem. B 17, 974–978 (2023). https://doi.org/10.1134/S1990793123040309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040309

Keywords:

Navigation