Skip to main content
Log in

Air Gasification of Wood at Increased Pressure in the Filtration Combustion Mode

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The air gasification of wood at increased pressure in the filtration combustion mode is experimentally studied. It is experimentally shown that increasing the pressure in the reactor (up to 3 atm) during the gasification of wood leads to an increase in the productivity of the experimental setup (by a factor of 1.6), a decrease in the quantity of tars formed (by a factor of 1.5), and a change in the concentrations of outgoing gases. Thermodynamic calculations of the effect of pressure at the stage of wood pyrolysis are carried out. With an increase in pressure from 1 to 9 atm, the volume concentrations of hydrogen and carbon monoxide decrease, while the volume concentrations of the water vapor and carbon dioxide increase. However, at a pyrolysis temperature of 1300 K, an increase in pressure has practically no effect on the composition of gaseous products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. U. Arena, Waste Manage. 32 (4), 625 (2012). https://doi.org/10.1016/j.wasman.2011.09.025

    Article  CAS  Google Scholar 

  2. M. Toledo, A. Arriagada, N. Ripoll, E. A. Salgansky, and M. A. Mujeebu, Renewable Sustainable Energy Rev. 177, 113213 (2023).

    Article  CAS  Google Scholar 

  3. G. Ya. Gerasimov, V. V. Khaskhachikh, G. A. Sychev, et al., Russ. J. Phys. Chem. B 16, 1067 (2022). https://doi.org/10.1134/S1990793122060045

    Article  CAS  Google Scholar 

  4. V. N. Smirnov, G. A. Shubin, A. V. Arutyunov, et al., Russ. J. Phys. Chem. B 16, 1092 (2022). https://doi.org/10.1134/S1990793122060112

    Article  CAS  Google Scholar 

  5. J. C. Van Dyk, M. J. Keyser, and M. Coertzen, Int. J. Coal Geol. 65 (3–4), 243 (2006). https://doi.org/10.1016/j.coal.2005.05.007

    Article  CAS  Google Scholar 

  6. M. A. Seed, A. R. Williams, D. J. Brown, and H. Hirschfelder, Proc. Third Int. Conf. on Clean Coal Technologies for Our Future, Cagliari, Italy (2007).

  7. I. L. Motta, N. T. Miranda, R. M. Filho, and M. R. W. Maciel, Renewable Sustainable Energy Rev. 94, 998 (2018). https://doi.org/10.1016/j.rser.2018.06.042

    Article  CAS  Google Scholar 

  8. V. M. Kislov, A. F. Zholudev, M. B. Kislov, and E. A. Salgansky, Russ. J. Appl. Chem. 92, 57 (2019). https://doi.org/10.1134/S1070427219010087

    Article  CAS  Google Scholar 

  9. M. Asadullah, Renewable Sustainable Energy Rev. 40, 118 (2014). https://doi.org/10.1016/j.rser.2014.07.132

    Article  CAS  Google Scholar 

  10. M. Cortazar, L. Santamaria, G. Lopez, et al., Energy Convers. Manage. 276, 116496 (2023). https://doi.org/10.1016/j.enconman.2022.116496

    Article  CAS  Google Scholar 

  11. M. Mayerhofer, P. Mitsakis, X. Meng, et al., Fuel 99, 204 (2012). https://doi.org/10.1016/j.fuel.2012.04.022

    Article  CAS  Google Scholar 

  12. U. Wolfesberger, I. Aigner, and H. Hofbauer, Environ. Prog. Sustainable Energy 28 (3), 372 (2009). https://doi.org/10.1002/ep.10387

    Article  CAS  Google Scholar 

  13. R. A. Knight, Biomass Bioenerg. 18 (1), 67 (2000). https://doi.org/10.1016/S0961-9534(99)00070-7

    Article  CAS  Google Scholar 

  14. S. Valin, S. Ravel, J. Guillaudeau, and S. Thiery, Fuel Process. Technol. 91 (10), 1222 (2010). https://doi.org/10.1016/j.fuproc.2010.04.001

    Article  CAS  Google Scholar 

  15. S. P. Medvedev, A. N. Ivantsov, E. K. Anderzhanov, et al., Russ. J. Phys. Chem. B 16, 1137 (2022). https://doi.org/10.1134/S1990793122060197

    Article  CAS  Google Scholar 

  16. A. M. Tereza, S. P. Medvedev, and V. N. Smirnov, Acta Astronaut. 181, 612 (2021). https://doi.org/10.1016/j.actaastro.2020.09.048

    Article  CAS  Google Scholar 

  17. S. P. Medvedev, O. G. Maksimova, T. T. Cherepanova, et al., Russ. J. Phys. Chem. B 16, 1112 (2022). https://doi.org/10.1134/S199079312206008

    Article  CAS  Google Scholar 

  18. Y. A. Situmorang, Z. Zhao, A. Yoshida, A. Abudula, and G. Guan, Renewable Sustainable Energy Rev. 117, 109486 (2020). https://doi.org/10.31857/S0207401X22110085

    Article  CAS  Google Scholar 

  19. I. Janajreh, I. Adeyemi, S. S. Raza, and C. Ghenai, Renewable Sustainable Energy Rev. 138, 110505 (2021). https://doi.org/10.1016/j.rser.2020.110505

    Article  CAS  Google Scholar 

  20. G. Ruiz, N. Ripoll, N. Fedorova, et al., Int. J. Heat Mass. Transfer 136, 383 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.009

    Article  CAS  Google Scholar 

  21. E. A. Salganskii, V. P. Fursov, S. V. Glazov, M. V. Salganskaya, G. B. Manelis, Combust. Explos. Shock Waves 39, 37 (2003).https://doi.org/10.1023/A:1022193117840

    Article  Google Scholar 

  22. G. B. Manelis, S. V. Glazov, D. B. Lempert, and E. A. Salgansky, Russ. Chem. Bull., 60, 1301 (2011).https://doi.org/10.1007/s11172-011-0198-4

  23. S. V. Glazov and E. V. Polianczyk, Theor. Found. Chem. Eng. 53 (2), 199 (2019). https://doi.org/10.1134/S0040579519020040

    Article  CAS  Google Scholar 

  24. F. F. Tabrizi, S. A. H. S. Mousavi, and H. Atashi, Energy Convers. Manage. 103, 1065 (2015). https://doi.org/10.1016/j.enconman.2015.07.005

    Article  CAS  Google Scholar 

  25. M. V. Tsvetkov, V. M. Kislov, Yu. Yu. Tsvetkova, et al., Russ. J. Phys. Chem. B 16, 711 (2022). https://doi.org/10.1134/S1990793122040315

    Article  CAS  Google Scholar 

  26. B. G. Trusov, Proc. XIV Int. Conf. Chem. Thermodyn. (Nauchno-Issled. Inst. Khim. S.-Peterb. Gos. Univ., St. Petersburg, 2002), p. 483 [in Russian].

  27. E. A. Salgansky, V. M. Kislov, S. V. Glazov, and M. V. Salganskaya, J. Combust. 2016, 9637082 (2016). https://doi.org/10.1155/2016/9637082

  28. H. Kitzler, C. Pfeifer, and H. Hofbauer, Fuel Process. Technol. 92 (5), 908 (2011). https://doi.org/10.1016/j.fuproc.2010.12.009

    Article  CAS  Google Scholar 

  29. A. T. Hoang, Z. Huang, S. Nižetić, et al., Int. J. Hydrog. Energy 47 (7), 4394 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.091

    Article  CAS  Google Scholar 

  30. A. Habibollahzade, P. Ahmadi, and M. A. Rosen, J. Cleaner Prod. 284, 124718 (2021). https://doi.org/10.1016/j.jclepro.2020.124718

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment (subject no. АААА-А19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kislov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, V.M., Tsvetkov, M.V., Zaichenko, A.Y. et al. Air Gasification of Wood at Increased Pressure in the Filtration Combustion Mode. Russ. J. Phys. Chem. B 17, 947–952 (2023). https://doi.org/10.1134/S1990793123040255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040255

Keywords:

Navigation