Skip to main content
Log in

Self-Ignition of Hydrogen Released under High Pressure through Two Slits

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper the investigation of hydrogen release through two slits into air by means of numerical modelling in two-dimensional setup is carried out. Initial hydrogen pressure is varied in the range from 350 to 700 atm that corresponds to the conditions of hydrogen storage in high-pressure vessels. Besides, two main parameters that describe geometric configuration, the width of slits and the distance between them, are varied. Two modes of hydrogen release are possible at different values of the listed parameters: with and without hydrogen self-ignition. It is shown that the gas heating in the region of interference of two shock waves plays the key role in the process of self-ignition during hydrogen release through two slits. The types of ignition kernels formed with the variation in the main parameters are presented. The diagrams of hydrogen release modes are obtained in a wide range of the width of slits and the distance between slits. The regions of parameters are found in those diagrams in which the self-ignition takes place. In particular, it is shown that hydrogen self-ignites only when the slits are located relatively close to each other. With the increase in the width of slit this criterion weakens and starting from the certain width of slit hydrogen could self-ignite in the absence of the flow through the second slit. The obtained results could be interesting for the development of safe hydrogen storage systems as well as systems in which the combustion initiation takes place without the use of additional ignition devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. K. V. Korytchenko, E. V. Poklonskii, and P. N. Krivosheev, Russ. J. Phys. Chem. B 8, 692 (2014). https://doi.org/10.1134/S1990793114050169

    Article  CAS  Google Scholar 

  2. S. N. Kozlov, A. M. Tereza, and S. P. Medvedev, Russ. J. Phys. Chem. B 15, 659 (2021). https://doi.org/10.1134/S1990793121040205

    Article  CAS  Google Scholar 

  3. I. S. Glukhov, Yu. N. Shebeko, A. Yu. Shebeko, and A. V. Zuban’, Russ. J. Phys. Chem. B 13, 471 (2019). https://doi.org/10.1134/S1990793119030047

    Article  CAS  Google Scholar 

  4. P. Wolanski and S. Wojcicki, in Proc. 14th Int. Symp. Combust. (Combust. Inst., Pittsburgh, 1973), p. 1217.

  5. T. Mogi, D. Kim, H. Shiina, and S. Horiguchi, J. Loss Prev. Process Ind. 21, 199 (2008). https://doi.org/10.1016/j.jlp.2007.06.008

    Article  CAS  Google Scholar 

  6. N. Kitabayashi, Y. Wada, T. Mogi, T. Saburi, and A. K. Hayashi, Int. J. Hydrogen Energy 38, 8100 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.040

    Article  CAS  Google Scholar 

  7. Z. Wang, X. Pan, Y. Jiang, et al., Int. J. Hydrogen Energy 45, 18042 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.051

    Article  CAS  Google Scholar 

  8. H. J. Lee, J. H. Park, S. D. Kim, S. Kim, and I. S. Jeung, Proc. Combust. Inst. 35, 2173 (2015). https://doi.org/10.1016/j.proci.2014.07.055

    Article  CAS  Google Scholar 

  9. S. V. Golovastov, D. I. Baklanov, V. V. Volodin, V. V. Golub, and K. V. Ivanov, Russ. J. Phys. Chem B 3, 348 (2009). https://doi.org/10.1134/S1990793109030026

    Article  Google Scholar 

  10. T. V. Bazhenova, S. V. Golovastov, V. V. Golub, I. N. Laskin, and N. V. Semin, Russ. J. Phys. Chem. B 3, 917 (2009). https://doi.org/10.1134/S1990793109060098

    Article  Google Scholar 

  11. V. N. Mironov, O. G. Penyazkov, and D. G. Ignatenko, Int. J. Hydrogen Energy 40, 5749 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.021

    Article  CAS  Google Scholar 

  12. P. Li, Q. Duan, L. Gong, et al., Fuel 236, 1586 (2019).https://doi.org/10.1016/j.fuel.2018.09.120

    Article  CAS  Google Scholar 

  13. Y. Morii, H. Terashima, M. Koshi, and T. Shimizu, J. Loss Prev. Process Ind. 34, 92 (2015). https://doi.org/10.1016/j.jlp.2015.01.020

    Article  CAS  Google Scholar 

  14. A. E. Smygalina and A. D. Kiverin, Int. J. Hydrogen Energy 47, 35877 (2022). https://doi.org/10.1016/j.ijhydene.2022.08.146

    Article  CAS  Google Scholar 

  15. W. Rudy, A. Teodorczyk, and J. Wen, Int. J. Hydrogen Energy 42, 7340 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.051

    Article  CAS  Google Scholar 

  16. S. V. Golovastov, V. M. Bocharnikov, and A. A. Samoilova, Int. J. Hydrogen Energy 41, 13322 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.148

    Article  CAS  Google Scholar 

  17. L. Gong, Q. Duan, J. Liu, et al., Int. J. Hydrogen Energy 43, 23558 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.226

    Article  CAS  Google Scholar 

  18. L. Gong, Q. Duan, J. Liu, et al., Int. J. Hydrogen Energy 44, 7041 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.197

    Article  CAS  Google Scholar 

  19. V. V. Golub, D. I. Baklanov, T. V. Bazhenova, et al., J. Loss Prev. Process Ind. 20, 439 (2007). https://doi.org/10.1016/j.jlp.2007.03.014

    Article  CAS  Google Scholar 

  20. V. V. Golub, T. V. Bazhenova, I. N. Laskin, and N. V. Semin, Tech. Phys. Lett. 35, 200 (2009). https://doi.org/10.1134/S106378500903002X

    Article  CAS  Google Scholar 

  21. A. Kessler, A. Schreiber, C. Wassmer, et al., Int. J. Hydrogen Energy 39, 20554 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.116

    Article  CAS  Google Scholar 

  22. R. Khaksarfard and M. Paraschivoiu, Int. J. Hydrogen Energy 37, 8734 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.061

    Article  CAS  Google Scholar 

  23. A. G. Shmakov, V. V. Kozlov, M. V. Litvinenko, and Yu. A. Litvinenko, Int. J. Hydrogen Energy 46, 2796 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.088

    Article  CAS  Google Scholar 

  24. D. Makarov and V. Molkov, Int. J. Hydrogen Energy 38, 8068 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.017

    Article  CAS  Google Scholar 

  25. A. J. Ruggles and I. W. Ekoto, Int. J. Hydrogen Energy 37, 17549 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.063

    Article  CAS  Google Scholar 

  26. J. Grune, K. Sempert, M. Kuznetsov, and T. Jordan, Int. J. Hydrogen Energy 39, 6176 (2014). https://doi.org/10.1016/j.ijhydene.2013.08.076

    Article  CAS  Google Scholar 

  27. X. Tang, M. Asahara, A. Koichi Hayashi, and N. Tsuboi, Int. J. Hydrogen Energy 42, 7120 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.016

    Article  CAS  Google Scholar 

  28. X. Li, M. Chen, Y. Wang, et al., Int. J. Hydrogen Energy 43, 9884 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.022

    Article  CAS  Google Scholar 

  29. X. Li, Q. Chen, M. Chen, et al., Int. J. Hydrogen Energy 44, 6353 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.079

    Article  CAS  Google Scholar 

  30. M. R. Swain, P. A. Filoso, and M. N. Swain, Int. J. Hydrogen Energy 32, 287 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.041

    Article  CAS  Google Scholar 

  31. S. H. Han, D. Chang, and J. S. Kim, Int. J. Hydrogen Energy 38, 3503 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.071

    Article  CAS  Google Scholar 

  32. S. H. Han, D. Chang, and J. S. Kim, Int. J. Hydrogen Energy 39, 9552 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.044

    Article  CAS  Google Scholar 

  33. S. Brennan and V. Molkov, Int. J. Hydrogen Energy 38, 8159 (2013). https://doi.org/10.1016/j.ijhydene.2012.08.036

    Article  CAS  Google Scholar 

  34. H. Hussein, S. Brennan, and V. Molkov, Int. J. Hydrogen Energy 45, 23882 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.194

    Article  CAS  Google Scholar 

  35. O. M. Belotserkovskii and Yu. M. Davydov, Large-Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian]

    Google Scholar 

  36. M. O. Conaire, H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook, Int. J. Chem. Kinet. 36, 603 (2004). https://doi.org/10.1002/kin.20036

    Article  CAS  Google Scholar 

  37. M. F. Ivanov, A. D. Kiverin, A. E. Smygalina, V. V. Golub, and S. V. Golovastov, Int. J. Hydrogen Energy 42, 11902 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.032

    Article  CAS  Google Scholar 

  38. A. E. Smygalina and A. D. Kiverin, Russ. J. Phys. Chem. B 15, 672 (2021). https://doi.org/10.1134/S1990793121040254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Smygalina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smygalina, A.E., Kiverin, A.D. Self-Ignition of Hydrogen Released under High Pressure through Two Slits. Russ. J. Phys. Chem. B 17, 907–914 (2023). https://doi.org/10.1134/S1990793123040188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040188

Keywords:

Navigation