Skip to main content
Log in

Specific Features of the Decay Kinetics of an Excited Singlet State Into a Pair of Triplet Excitons In Rubrene Crystals

  • XXXIV Symposium on Modern Chemical Physics (September 2022, Tuapse)
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study, the specific features of the kinetics of singlet fission (SF)—i.e., spontaneous splitting of the excited singlet state into a pair of triplet (T) excitons (TT-pair)—in anisotropic molecular crystals are analyzed in detail. These features are known to be primarily determined by the TT-annihilation of the created TT-pairs (migrating in the crystals). In our analysis, the kinetics of annihilation-affected SF processes is described in the two-state model (TSM), in which the interaction of migrating T-excitons is associated with transitions between two kinetic states of TT-pairs: [TT]-state of coupled TT-pairs and [T+T]-state of freely migrating T-excitons. The TSM makes it possible to represent the effects of migration and interaction on SF-kinetics in terms of the lattice Green’s functions, for which the analytical formulas are obtained in this study. The TSM is applied to the analysis of SF-kinetics in the rubrene single crystals recently measured in a wide time range. The analysis provides detailed information on some characteristic kinetic properties of SF processes in anisotropic crystals. It is shown, for example, that the formation of the [TT]-state in the SF process results in some distortion of the shape of the SF kinetic dependence at short times (of the order of the primary-stage time of SF kinetics). Is also demonstrated that the anisotropy of T-exciton migration manifests itself in some characteristic features of SF kinetics at long times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. M. B. Smith and J. Michl, Ann. Rev. Phys. Chem. 64, 361 (2013).https://doi.org/10.1146/annurev-physchem-040412-110130

    Article  CAS  Google Scholar 

  2. D. Casanova, Chem. Rev. 118, 7164 (2018). https://doi.org/10.1021/acs.chemrev.7b00601

    Article  CAS  PubMed  Google Scholar 

  3. K. Miyata, F. S. Conrad-Burton, F. L. Geyer, et al., Chem. Rev. 84, 4261 (2019). https://doi.org/10.1021/acs.chemrev.8b00572

    Article  CAS  Google Scholar 

  4. R. E. Merrifield, J. Chem. Phys. 48, 4318 (1968). https://doi.org/10.1063/1.1669777

    Article  CAS  Google Scholar 

  5. A. Suna, Phys. Rev. B 1, 1716 (1970). https://doi.org/10.1103/PhysRevB.1.1716

    Article  Google Scholar 

  6. A. I. Shushin, J. Chem. Phys. 156, 074703 (2022). https://doi.org/10.1063/5.0078158

    Article  CAS  PubMed  Google Scholar 

  7. V. V. Tarasov, G. E. Zoriniants, A. I. Shushin, et al., Chem. Phys. Lett. 267, 58 (1997). https://doi.org/10.1016/S0009-2614(97)00056-0

    Article  CAS  Google Scholar 

  8. A. S. Vetchinkin, S. Ya. Umanskii, Yu. A. Chaikina, et al., Russ. J. Phys. Chem. B 16, 945 (2022). https://doi.org/10.1134/S1990793122050104

    Article  Google Scholar 

  9. A. Ryansnyanskiy and I. Biaggio, Phys. Rev. B 84, 193203 (2011). https://doi.org/10.1103/PhysRevB.84.193203

    Article  CAS  Google Scholar 

  10. T. Barhoumi, J. L. Monge, M. Mejatty, et al., Eur. Phys. J. B 59, 167 (2007).

    Article  CAS  Google Scholar 

  11. G. B. Piland, J. J. Burdett, D. Kurunthu, et al., J. Phys. Chem. 117, 1224 (2013). https://doi.org/10.1021/jp309286v

    Article  CAS  Google Scholar 

  12. A. I. Shushin, Russ. J. Phys. Chem. B 11, 887 (2017). https://doi.org/10.1134/S1990793117060082

    Article  CAS  Google Scholar 

  13. G. B. Pilland, J. J. Burdett, R. J. Dillon, et al., J. Phys. Chem. Lett. 5, 2312 (2014). https://doi.org/10.1021/jz500676c

    Article  CAS  Google Scholar 

  14. U. E. Steiner and T. Ulrich, Chem. Rev. 89, 514 (1989). https://doi.org/10.1021/cr00091a003

    Article  Google Scholar 

  15. K. Blum, Density Matrix Theory and Applications (Plenum Press, New York, 1981).

    Book  Google Scholar 

  16. A. I. Shushin, Chem. Phys. Lett. 118, 197 (1985). https://doi.org/10.1016/0009-2614(85)85297-0

    Article  CAS  Google Scholar 

  17. A. I. Shushin, J. Chem. Phys. 95, 3657 (1991). https://doi.org/10.1063/1.460817

    Article  CAS  Google Scholar 

  18. A. I. Shushin, J. Chem. Phys. 97, 1954 (1992). https://doi.org/10.1063/1.463132

    Article  CAS  Google Scholar 

  19. E. A. Wolf and I. Biaggio, Phys. Rev. B 103, L201201 (2021). https://doi.org/10.1103/PhysRevB.103.L201201

    Article  CAS  Google Scholar 

  20. A. I. Shushin, J. Chem. Phys. 151, 034103 (2019). https://doi.org/10.1063/1.5099667

    Article  CAS  PubMed  Google Scholar 

  21. A. I. Shushin, Chem. Phys. Lett. 678, 283 (2017). https://doi.org/10.1016/j.cplett.2017.04.068

    Article  CAS  Google Scholar 

  22. Lavrent’ev, M.A. and Shabat, B.V., Methods of Complex Analysis (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  23. A. L. Buchachenko, Russ. J. Phys. Chem. B 16, 9 (2022). https://doi.org/10.1134/S1990793122010031

    Article  CAS  Google Scholar 

  24. A. L. Buchachenko and D. A. Kuznetsov, Russ. J. Phys. Chem. B 15, 1 (2021). https://doi.org/10.1134/S1990793121010024

    Article  CAS  Google Scholar 

  25. A. A. Lundin and V. E. Zobov, Russ. J. Phys. Chem. B 15, 839 (2021). https://doi.org/10.1134/S1990793121050079

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of a state task (subject no. AAAA-A19-119012890064-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Shushin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shushin, A.I., Umanskii, S.Y. & Chaikina, Y.A. Specific Features of the Decay Kinetics of an Excited Singlet State Into a Pair of Triplet Excitons In Rubrene Crystals. Russ. J. Phys. Chem. B 17, 860–867 (2023). https://doi.org/10.1134/S1990793123040176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040176

Keywords:

Navigation