Skip to main content
Log in

Symmetric Coupling Two-Channel System with Different Hopping Rates

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The symmetric coupling two-channel totally asymmetric simple exclusion process (TASEP) for particles with arbitrary hopping rates is theoretically investigated. It is found that the phase diagrams include three stationary state phases, which is similar to the normal TASEP. When the particles on both lanes have the same hopping rates, the phase diagrams depend on the hopping rate, and their boundaries are linearly related to the square of the hopping rate. In the case of different hopping rates, the square of the average hopping rate of both lanes determines the phase diagrams. Notably, the system of different hopping rates can be replaced by the system of the same hopping rate. The hopping rate of the new system is equal to the average hopping rate of the original system. The theoretical predictions can be checked by extensive Monte Carlo simulation, and the results are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Biopolymers 6, 1 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. B. Widom, J. L. Viovy, and A. D. Defontaines, J. Phys. I 1, 1759 (1991).

    CAS  Google Scholar 

  3. G. M. Schutz, Europhys. Lett. 48, 623 (1999).

    Article  CAS  Google Scholar 

  4. T. Chou, Phys. Rev. Lett. 80, 85 (1998).

    Article  CAS  Google Scholar 

  5. L. B. Shaw, R. K. Zia, and K. H. Lee, Phys. Rev. E 68, 021910 (2003).

    Article  Google Scholar 

  6. L. B. Shaw, A. B. Kolomeisky, and K. H. Lee, J. Phys. A 37, 2105 (2004).

    Article  Google Scholar 

  7. D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).

    Article  Google Scholar 

  8. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).

    Article  Google Scholar 

  9. C. Arita, M. E. Foulaadvand, and L. Santen, Phys. Rev. E 95, 032108 (2017).

    Article  PubMed  Google Scholar 

  10. A. K. Gatin, M. V. Grishin, A. S. Prosteny, et al., Russ. J. Phys. Chem. B 16, 468 (2022). https://doi.org/10.1134/S1990793122030046

    Article  CAS  Google Scholar 

  11. M. V. Grishin, A. K. Gatin, V. A. Kharitonov, et al., Russ. J. Phys. Chem. B 16, 211 (2022). https://doi.org/10.1134/S199079312232001X

    Article  CAS  Google Scholar 

  12. V. M. Azriel’, V. M. Akimov, E. V. Ermolova, et al., Russ. J. Phys. Chem. B 15, 935 (2021). https://doi.org/10.1134/S1990793121060142

    Article  Google Scholar 

  13. M. V. Klimenko, V. V. Klimenko, A. S. Yasyukevich, et al., Russ. J. Phys. Chem. B 16, 531 (2022). https://doi.org/10.1134/S1990793122030071

    Article  CAS  Google Scholar 

  14. A. B. Kolomeisky, G. M. Schutz, E. B. Kolomeisky, et al., J. Phys. A 31, 6911 (1998).

    Article  CAS  Google Scholar 

  15. B. Derrida, Phys. Rep. 301, 65 (1998).

    Article  CAS  Google Scholar 

  16. S. Xiao, X. Chen, and Y. Liu, Russ. J. Phys. Chem. B 14, 929 (2020). https://doi.org/10.1134/S1990793120060317

    Article  Google Scholar 

  17. N. Mirin and A. B. Kolomeisky, J. Stat. Phys. 110, 811 (2003).

    Article  Google Scholar 

  18. S. Xiao and J. Y. Bai, Mod. Phys. Lett. B 27, 1350062 (2013).

    Article  Google Scholar 

  19. S. Xiao, S. Y. Wu, L. Q. Tang, et al., Mod. Phys. Lett. B 26, 1250115 (2012).

    Google Scholar 

  20. Y. N. Liu, W. C. Xiao, P. Dong, et al., Renew. Sust. Energ. Rev. 62, 815 (2016).

    Article  Google Scholar 

  21. S. Xiao, M. Z. Liu, J. Shang, et al., Chin. Phys. B 21, 020514 (2012).

    Article  Google Scholar 

  22. A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. Lett. 90, 086601 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. V. Popkov, A. Rakos, R. D. Willmann, et al., Phys. Rev. E 67, 066117 (2003).

    Article  CAS  Google Scholar 

  24. M. R. Evans, R. Juhasz, and L. Santen, Phys. Rev. E 68, 026117 (2003).

    Article  CAS  Google Scholar 

  25. E. Levine and R. D. Willmann, J. Phys. A 37, 3333 (2004).

    Article  Google Scholar 

  26. E. Pronina and A. B. Kolomeisky, J. Phys. A 37, 9907 (2004).

    Article  Google Scholar 

  27. E. Pronina and A. B. Kolomeisky, Phys. A 372, 12 (2006).

    Article  Google Scholar 

  28. S. Xiao, M. Z. Liu, and J. J. Cai, Phys. Lett. A 374, 8 (2009).

    Article  CAS  Google Scholar 

  29. Q. H. Shi, R. Jiang, M. B. Hu, et al., J. Stat. Phys. 142, 616 (2011).

    Article  Google Scholar 

  30. S. Xiao, L. Q. Tang, and H. Wang, Cent. Eur. J. Phys. 9, 1077 (2011).

    Google Scholar 

  31. K. Tsekouras and A. B. Kolomeisky, J. Phys. A 41, 465001 (2008).

    Article  Google Scholar 

  32. M. E. Foulaadvand, S. Chaaboki, and M. Saalehi, Phys. Rev. E 75, 011127 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors acknowledge the support of Item sponsored by Shandong Provincial National Foundation, China (Grant no. ZR2020MG019) and National Natural Science Foundation of China (Grant no. 51568032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Xiao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Chen, X., Cui, X. et al. Symmetric Coupling Two-Channel System with Different Hopping Rates. Russ. J. Phys. Chem. B 17, 896–902 (2023). https://doi.org/10.1134/S1990793123040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040073

Keywords:

Navigation