Skip to main content
Log in

Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field

  • XXXIV Symposium on Modern Chemical Physics (September 2022, Tuapse)
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This study discusses the conditions for the occurrence of two-dimensional superconductivity under the action of an electric field on an La2 – xSrxCuO4 plate at a temperature lower than the maximum temperature of the superconducting transition, but when the concentration of charge carriers falls outside the superconductivity range. The study is carried out for a lanthanum-strontium cuprate plate at various hole concentrations, as well as temperature, and potential differences. A quasi-two-dimensional superconducting layer arises near the surface of the plate. The thickness of the superconducting layer is several angstroms and independent of the field strength in the range investigated. The thickness depends only on the concentration of holes and temperature. In addition, the distance of the superconducting layer from the edge of the plate is found to be a function of all three factors. The conditions used for conducting the experiment are also formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B 4, 189 (1986).

    Article  Google Scholar 

  2. B. Keimer, S. A. Kivelson, M. R. Norman, et al., Nature 518, 179 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. T. Yoshida, X. J. Zhou, D. H. Lu, et al., J. Phys.: Cond. Matter 19, 125209 (2007).

    Google Scholar 

  4. T. M. Rice, Phys. Rev. A 140, 1889 (1965).

    Article  Google Scholar 

  5. N. Reyren, S. Thiel, A. D. Caviglia, et al., Science 317, 1196 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. C. Brun, T. Cren, V. Cherkez, et al., Nature Phys. 10, 444 (2014).

    Article  CAS  Google Scholar 

  7. T. Uchihashi, Supercond. Sci. Technol. 30, 1 (2016).

    Google Scholar 

  8. T. Uchihashi, S. Yoshizava, E. Minamitami, et al., Mol. Syst. Des. Eng. 4, 511 (2019).

    Article  CAS  Google Scholar 

  9. M. V. Sadovskii, Phys.-Usp. 59, 947 (2016).

    Article  CAS  Google Scholar 

  10. D. P. Pavlov, R. R. Zagidullin, V. M. Mikhailov, et al., Phys. Rev. Lett. 122, 237001 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. R. E. Glover and M. D. Sherill, Phys. Rev. Lett. 5, 248 (1960).

    Article  CAS  Google Scholar 

  12. S. I. Shkuratov, J. Vac. Sci. Technol. 11, 353 (1993).

    Article  CAS  Google Scholar 

  13. S. Sakai, Phys. Rev. B 47, 9042 (1993).

    Article  CAS  Google Scholar 

  14. K. Moravets, Phys. Rev. B 66, 172508 (2002).

    Article  Google Scholar 

  15. P. Konsin and B. Sorkin, Phys. Rev. B 58, 5795 (1998).

    Article  CAS  Google Scholar 

  16. C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. A. E. Galashev, O. R. Rakhmanova, K. P. Katin, et al., Russ. J. Phys. Chem. B 14, 1055 (2021).

    Article  Google Scholar 

  18. G. V. Simbirtseva, N. P. Piven’, and S. D. Babenko, Russ. J. Phys. Chem. B 14, 980 (2021).

    Article  Google Scholar 

  19. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, Phys. Lett. A 379 (5), 421 (2015).

    Article  Google Scholar 

  20. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, JETP Lett. 104, 730 (2016).

    Article  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, Oxford, 1980).

  22. L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).

  23. I. M. Gelfand and S. V. Fomin, Calculus of Variations (Prentice-Hall, Englewood Cliffs, NJ, 1963).

    Google Scholar 

  24. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (North Holland, Amsterdam, 1987).

  25. H. Takagi, R. J. Cava, M. Marezio, et al., Phys. Rev. Lett. 68, 3777 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. T. Nagano, T. Y. Tomioka, Y. Nakayama, et al., Phys. Rev. B 48, 9689 (1993).

    Article  CAS  Google Scholar 

  27. K. Yamada, C. H. Lee, K. Kurahashi, et al., Phys. Rev. B 57, 6165 (1998).

    Article  CAS  Google Scholar 

  28. H. Takagi, T. Ido, S. Ishibashi, et al., Phys. Rev. B 40, 2254 (1989).

    Article  CAS  Google Scholar 

  29. J. B. Torrance, A. Bezinge, A. I. Nazzal, T. C. Huang, et al., Phys. Rev. B 40, 8872 (1989).

    Article  CAS  Google Scholar 

  30. R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 73, 180505 (2006).

    Article  Google Scholar 

  31. M. A. Kozhushner, V. S. Posvyanskii, B. V. Lidskii, et al., Phys. Solid State 62 (8), 1154 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.V. Val’kov, D.M. Dzebisashvili, and K.S. Pigalski for their useful discussions of this study.

Funding

This study was supported by a subsidy from the Ministry of Education and Science allocated to the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences for the implementation of a state assignment (topic no. 122040500071-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Bodneva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodneva, V.L., Kozhushner, M.A., Lidskii, B.V. et al. Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field. Russ. J. Phys. Chem. B 17, 783–789 (2023). https://doi.org/10.1134/S1990793123040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040048

Keywords: 

Navigation