Skip to main content
Log in

Rovibrational Transition Properties of System X1Σ+–A1Π of CO

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The potential energy curves of the X1Σ+ and A1Π states and the transition dipole moments between them were calculated using the internally contracted multireference configuration interaction (icMRCI) approach. To calculate the accurate rovibrational transition properties of the A1Π–X1Σ+ system, we employed the experimental Te of the A1Π state and the Re of the two states to improve the reliability of the ab initio results. The transition energies, Einstein A coefficients, oscillator strengths, vibrational transition dipole moment matrix elements, and Franck–Condon factors of the rovibrational transitions of the A1Π–X1Σ+ system were calculated at the rotational quantum number J ≤ 150 for the lower vibrational levels. The Einstein A coefficients of certain rovibrational transitions are large, suggesting that these transitions are strong and therefore, can be readily measured through spectroscopy. Comparison of the rovibrational transition properties calculated herein with the experimental results indicated an acceptable agreement, suggesting that the obtained results are accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. K. Esteki, A. Predoi-Cross, C. Povey, et al., J. Quantum Spectrosc. Radiat. Transfer 203, 309 (2017). https://doi.org/10.1016/j.jqsrt.2017.04.008

    Article  CAS  Google Scholar 

  2. Z. D. Reed and J. T. Hodges, J. Quantum Spectrosc. Radiat. Transfer 203, 300 (2017). https://doi.org/10.1016/j.jqsrt.2017.06.034

    Article  CAS  Google Scholar 

  3. T. M. Trivikram, R. Hakalla, A. N. Heays, et al., Mol. Phys. 115, 3178 (2017). https://doi.org/10.1080/00268976.2017.1356477

    Article  CAS  Google Scholar 

  4. R. T. Birge, Phys. Rev. 28, 1157 (1926). https://doi.org/10.1103/PhysRev.28.1157

    Article  CAS  Google Scholar 

  5. J. E. Hesser, J. Chem. Phys. 48, 2518 (1968). https://doi.org/10.1063/1.1669477

    Article  CAS  Google Scholar 

  6. J. G. Chervenak and R. A. Anderson, J. Opt. Soc. Am. 61, 952 (1971). https://doi.org/10.1364/JOSA.61.000952

    Article  CAS  Google Scholar 

  7. R. E. Imhof and F. H. Read, Chem. Phys. Lett. 11, 326 (1971). https://doi.org/10.1016/0009-2614(71)80498-0

    Article  CAS  Google Scholar 

  8. R. L. Burnham, R. C. Isler, and W. C. Wells, Phys. Rev. A 6, 1327 (1972). https://doi.org/10.1103/PhysRevA.6.1327

    Article  CAS  Google Scholar 

  9. T. A. Carlson, N. Ðurić, P. Erman, and M. Larsson, Z. Phys. A 287, 123 (1978). https://doi.org/10.1007/BF01408081

    Article  CAS  Google Scholar 

  10. R. W. Field, O. B. d’Azy, M. Lavollée, R. Lopez-Delgado, and A. Tramer, J. Chem. Phys. 78, 2838 (1983).https://doi.org/10.1063/1.445271

    Article  CAS  Google Scholar 

  11. A. C. Le Floch, F. Launay, J. Rostas, et al., J. Mol. Spectrosc. 121, 337 (1987). https://doi.org/10.1016/0022-2852(87)90056-7

    Article  CAS  Google Scholar 

  12. R. L. Deleon, J. Chem. Phys. 89, 20 (1988). https://doi.org/10.1063/1.455507

    Article  CAS  Google Scholar 

  13. M. Eidelsberg, F. Rostas, J. Breton, and B. Thieblemont, J. Chem. Phys. 96, 5585 (1992). https://doi.org/10.1063/1.462700

    Article  CAS  Google Scholar 

  14. M. Eidelsberg, A. Jolly, J. L. Lemaire, et al., Astron. Astrophys. 346, 705 (1999). https://ui.adsabs.harvard.edu/abs/1999A&A…346..705E.

    CAS  Google Scholar 

  15. J. F. Ogilvie, S.-L. Cheah, Y.-P. Lee, and S. P. A. Sauer, Theor. Chem. Acc. 108, 85 (2002). https://doi.org/10.1007/s00214-002-0337-y

    Article  CAS  Google Scholar 

  16. E. J. Salumbides, M. L. Niu, J. Bagdonaite, et al., Phys. Rev. A 86, 022510 (2012). https://doi.org/10.1103/PhysRevA.86.022510

    Article  CAS  Google Scholar 

  17. M. Ostrowska-Kopeć, I. Piotrowska, R. Kępa, et al., J. Mol. Spectrosc. 314, 63 (2015). https://doi.org/10.1016/j.jms.2015.06.004

    Article  CAS  Google Scholar 

  18. R. Hakalla, T. M. Trivikram, A. N. Heays, et al., Mol. Phys. 117, 79 (2019). https://doi.org/10.1080/00268976.2018.1495848

    Article  CAS  Google Scholar 

  19. D. H. Shi, W. T. Li, J. F. Sun, and Z. L. Zhu, Int. J. Quantum Chem. 113, 934 (2013). https://doi.org/10.1002/qua.24036

    Article  CAS  Google Scholar 

  20. K. Kirby and D. L. Cooper, J. Chem. Phys. 90, 4895 (1989). https://doi.org/10.1063/1.456584

    Article  CAS  Google Scholar 

  21. L. Chantranupong, K. Bhanuprakash, M. Honigmann, G. Hirsch, and R.J. Buenker, Chem. Phys. 161, 351 (1992). https://doi.org/10.1016/0301-0104(92)80152-L

    Article  CAS  Google Scholar 

  22. A. Spielfiedel, W.-Ül. Tchang-Brillet, F. Dayou, and N. Feautrier, Astron. Astrophys. 346, 699 (1999). https://ui.adsabs.harvard.edu/abs/1999A&A…346..699S.

    CAS  Google Scholar 

  23. I. Borges, P. J. S. B. Caridade, and A. J. C. Varandas, J. Mol. Spectrosc. 209, 24 (2001). https://doi.org/10.1006/jmsp.2001.8402

    Article  CAS  Google Scholar 

  24. M. L. Da Silva and M. Dudeck, J. Quantum Spectrosc. Radiat. Transfer 102, 348 (2006). https://doi.org/10.1016/j.jqsrt.2006.02.018

    Article  CAS  Google Scholar 

  25. M. K. Dixit, A. Srivastava, and B. L. Tembe, J. Comput. Sci. 10, 262 (2015). https://doi.org/10.1016/j.jocs.2015.06.002

    Article  Google Scholar 

  26. Z. Qin, J. M. Zha, and L.H. Liu, J. Quantum Spectrosc. Radiat. Transfer 202, 286 (2017). https://doi.org/10.1016/j.jqsrt.2017.08.010

    Article  CAS  Google Scholar 

  27. J. X. Cheng, H. Zhang, and X. L. Cheng, Astrophys. J. 859, 19 (2018). https://doi.org/10.3847/1538-4357/aaba76

    Article  CAS  Google Scholar 

  28. G. Li, I. E. Gordon, L.S. Rothman, Y. Tan, et al., Astrophys. J. Suppl. Ser. 216, 15 (2015). https://doi.org/10.1088/0067-0049/216/1/15

    Article  CAS  Google Scholar 

  29. H.-J. Werner and W. Meyer, J. Chem. Phys. 73, 2342 (1980). https://doi.org/10.1063/1.440384

    Article  CAS  Google Scholar 

  30. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974). https://doi.org/10.1002/qua.560080106

    Article  CAS  Google Scholar 

  31. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988). https://doi.org/10.1063/1.455556

    Article  CAS  Google Scholar 

  32. H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, MOLPRO 2010.1. https://www.molpro.net/.

  33. T. Van Mourik, A. K. Wilson, and T. H. Dunning, Mol. Phys. 99, 529 (1999). https://doi.org/10.1080/00268979909482990

    Article  Google Scholar 

  34. D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994). https://doi.org/10.1063/1.466439

    Article  CAS  Google Scholar 

  35. D. E. Woon and T. H. Dunning, J. Chem. Phys. 103, 4572 (1995). https://doi.org/10.1063/1.470645

    Article  CAS  Google Scholar 

  36. W. A. De Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48 (2001). https://doi.org/10.1063/1.1329891

    Article  CAS  Google Scholar 

  37. S. Sun, M. Zhou, and Z. Zhu, J. Russ. J. Phys. Chem. B 17 (2) (2023).

  38. S. Sun, Y. Gao, and Z. Zhu, J. Russ. J. Phys. Chem. B 17 (2) (2023).

  39. M. L. Jabbar and K. J. Kadhim. Russ. J. Phys. Chem. B 15, 46 (2021). https://doi.org/10.1134/S1990793121010188

    Article  CAS  Google Scholar 

  40. X. Miao, S. Zhou, and C. Wang, J. Russ. J. Phys. Chem. B 16, 804 (2022). https://doi.org/10.1134/S199079312204011X

    Article  CAS  Google Scholar 

  41. A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002). https://doi.org/10.1063/1.1515314

    Article  CAS  Google Scholar 

  42. V. B. Oyeyemi, D. B. Krisiloff, J. A. Keith, F. Libisch, M. Pavone, and E. A. Carter, J. Chem. Phys. 140, 044317 (2014). https://doi.org/10.1063/1.4862159

    Article  CAS  PubMed  Google Scholar 

  43. R. J. Le Roy, J. Quantum Spectrosc. Radiat. Transfer 186, 167 (2017). https://doi.org/10.1016/j.jqsrt.2016.05.028

    Article  CAS  Google Scholar 

  44. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 4: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

Download references

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science Foundation of China under Grant no. 12074105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Gao, Y. & Zhu, Z. Rovibrational Transition Properties of System X1Σ+–A1Π of CO. Russ. J. Phys. Chem. B 17, 646–657 (2023). https://doi.org/10.1134/S1990793123030272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030272

Keywords:

Navigation