Skip to main content
Log in

Metal Ions Induced Structural Transformation of Guanine and Water Supramolecular Networks

  • CHEMICAL PHYSICS OF NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Molecular self-assembly of Guanine (G) plays a key role in understanding the formation of nucleic acids and how it can be exploited for constructing nanostructures. The transformation effects of metal ions on the Deoxyribonucleic acid (DNA) bases guanine metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules can form a series of hydrogen-bonded structure at the water- highly oriented pyrolytic graphite (HOPG) interface through adjusting the concentration of G in water. Moreover, metal calcium ions (Ca2+) and potassium ions (K+) bind with G molecules to form G4C\({\text{a}}_{1}^{{2 + }}\) and the G4\({\text{K}}_{2}^{ + }\) metal-organic networks after the introduction of the alkali-metal ions in cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. H. Yan, S. H. Park, G. Finkelstein, et al., Science 301, 1882 (2003). https://www.science.org/doi/abs/ 10.1126/science.1089389

    Article  CAS  PubMed  Google Scholar 

  2. A. Ciesielski, S. Lena, S. Masiero, G. P. Spada, and P. Samori, Angew. Chem. Int. Ed. 122, 2007 (2010). https://onlinelibrary.wiley.com/doi/full/10.1002/ ange.200905827.

    Article  Google Scholar 

  3. Y. He, Y. Tian, Y. Chen, A. E. Ribbe, and C. Mao, Chem. Commun. 47, 165 (2007). https://pubsrsc.53yu.com/en/content/articlelanding/ 2007/cc/b611984k/unauth.

    Article  Google Scholar 

  4. K. Wang, M. You, Y. Chen, et al., Angew. Chem. Int. Ed. 50, 6098 (2011). https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201008053.

    Article  CAS  Google Scholar 

  5. K. M. M. Carneiro, F. A. Aldaye, and H. F. Sleiman, J. Am. Chem. Soc. 132, 679 (2010). https://pubs.acs.org/doi/abs/10.1021/ja907735m.

    Article  CAS  PubMed  Google Scholar 

  6. S. N. Georgiades, N. H. Abd Karim, K. Suntharalingam, and R. Vilar, Angew. Chem. Int. Ed. 50, 6098 (2011). https://onlinelibrary.wiley.com/doi/full/10.1002/ anie.200906363.

    Article  Google Scholar 

  7. S. M. Douglas, H. Dietz, T. Liedl, et al., Nature 459, 414 (2009). https://wwwnature.53yu.com/articles/nature08016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. Bilbao, I. Destoop, S. D. Feyter, and D. Gonzalez-Rodriguez, Angew. Chem. Int. Ed. 55, 659 (2016). https://onlinelibrary.wiley.com/doi/full/10.1002/anie. 201509233.

    Article  CAS  Google Scholar 

  9. I. Imaz, M. Rubio-Martinez, J. An, et al., Chem. Commun. 47, 7287 (2011).

    Article  CAS  Google Scholar 

  10. S. Balasubramanian and S. Neidle, Curr. Opin. Chem. Biol. 13, 345 (2009). https://www.sciencedirect.com/ science/article/abs/pii/S1367593109000696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O. Yamauchi, A. Odani, and M. Takani, J. Chem. Soc., Dalton Trans. 23, 3411 (2002). https://doi.org/10.1039/B202385G

    Article  Google Scholar 

  12. U. Schlickum, R. Decher, F. Klappenberger, G. Zoppellaro, S. Klyatskaya, M. Ruben, I. Silanes, A. Arnau, K. Kern, H. Brune, and J. V. Barth, Nano Lett. 7, 3813 (2007). https://doi.org/10.1021/nl072466m

    Article  CAS  PubMed  Google Scholar 

  13. M. Pivetta, G. E. Pacchioni, E. Fernandes, and H. Brune, J. Chem. Phys. 142, 101928 (2015) https://doi.org/10.1063/1.4909518

    Article  CAS  PubMed  Google Scholar 

  14. A. Langner, S. L.Tait, N. Lin, et al., Angew. Chem. Int. Ed. 124, 4403 (2012).https://doi.org/10.1002/ange.201108530

    Article  Google Scholar 

  15. L. Wang, H. Kong, C. Zhang, et al., ACS Nano 8, 11799 (2014). https://doi.org/10.1021/nn5054156

    Article  CAS  PubMed  Google Scholar 

  16. E. S. Andersen, M. D. Dong, M. M. Nielsen, J. Kjems, et al., ACS Nano 2, 1213 (2008). https://doi.org/10.1021/nn800215j

    Article  CAS  PubMed  Google Scholar 

  17. W. Xu, R. E. Kelly, H. Gersen, et al., Small 5, 1952 (2009). https://doi.org/10.1002/smll.200900315

    Article  CAS  PubMed  Google Scholar 

  18. L. I. Pelevina, A. V. Akleev, I. N. Kogarko, et al., Russ. J. Phys. Chem. B 15, 1046 (2021). https://linkspringer.53yu.com/article/10.1134/S1990793121060233.

  19. Y. Li, J. M. Artes, J. Qi, J. Hihath, et al., J. Phys. Chem. Lett. 7, 1888 (2016). https://doi.org/10.1021/acs.jpclett.6b00749

    Article  CAS  PubMed  Google Scholar 

  20. W. Xu, J. Wang, M. Yu, et al., J. Am. Chem. Soc. 132, 15927 (2010). https://doi.org/10.1021/ja1078909

    Article  CAS  PubMed  Google Scholar 

  21. K. F. Sergeichev, N. A. Lukina, L. M. Apasheva, E. N. Ovcharenko, and A. V. Lobanov, Russ. J. Phys. Chem. B 16, 84 (2022). https://linkspringer.53yu.com/ article/10.1134/S1990793122010134.

  22. C. Zhang, L. Wang, L. Xie, et al., ChemPhysChem 16, 2099 (2015). https://doi.org/10.1002/cphc.201500301

    Article  CAS  PubMed  Google Scholar 

  23. W. Li, J. Jin, X. Leng, et al., J. Phys. Chem. C 120, 12605 (2016). https://doi.org/10.1021/acs.jpcc.6b03434

    Article  CAS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  25. J. Xu and M. Saeys, Chem. Eng. Sci. 62, 5039 (2007). https://doi.org/10.1016/j.ces.2006.11.050

    Article  CAS  Google Scholar 

  26. M. G. Khrenova, L. V. Polyakov, and A. V. Nemukhin, Russ. J. Phys. Chem. B 16, 455 (2022). https://linkspringer.53yu.com/article/10.1134/S1990793122030174.

  27. I. V. Polyakov, B. L. Grigorenko, and A. V. Nemukhin, Russ. J. Phys. Chem. B 15, 103 (2021). https://linkspringer.53yu.com/article/10.1134/S1990793121010255.

  28. C. Zhang, L. Xie, Y. Q. Ding, Q. Sun, and W. Xu, ACS Nano 10, 3776 (2016). https://doi.org/10.1021/acsnano.6b00393

    Article  CAS  PubMed  Google Scholar 

  29. R. E. Kelly, A. Y. J. Lee, and L. N. Kantorovich, J. Phys. Chem. B 109, 11933 (2005). https://doi.org/10.1021/jp050962y

    Article  CAS  PubMed  Google Scholar 

  30. L. Xie, C. Zhang, Y. Ding, and W. Xu, Angew. Chem. Int. Ed. 129, 5159 (2017). https://doi.org/10.1002/ange.201702589

    Article  Google Scholar 

  31. H. Kong, C. Zhang, L. Xie, L. Wang, and W. Xu, Angew. Chem. Int. Ed. 55, 7157 (2016). https://doi.org/10.1002/anie.201602572

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial and technical support from National Natural Science Foundation of China (Grant no. 12064026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, W., Qiu, S. et al. Metal Ions Induced Structural Transformation of Guanine and Water Supramolecular Networks. Russ. J. Phys. Chem. B 17, 778–782 (2023). https://doi.org/10.1134/S1990793123030260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030260

Keywords:

Navigation