Skip to main content
Log in

Why Do Proteins Fold into Unique 3D Structures? And Other Questions...

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The article briefly reviews the history of the development of ideas about the dynamics of proteins and other biopolymers and notes the significant contribution of V.I. Goldansky in organizing and conducting these studies in Russia. The modern development of earlier ideas about the dynamics of biopolymers and protein folding is discussed. It is shown that folding is not an isolated problem and is related to the fundamental dynamic properties of linear polymers in the condensed phase. Analytical methods using approaches based on multidimensional geometry show that the viscosity of the medium is one of the most important factors that determines the rules for the movement of a representative point along the ultramultidimensional potential energy surface (PES). These rules lead to the concentration of trajectories in those regions of the configuration space of a macromolecule that correspond to relatively smooth PES regions, which is important for understanding the reasons for the stability of the results of calculations of large systems using the molecular dynamics (MD) method, despite the fundamental inaccuracy in determining the available force fields. This article also briefly describes a new approach to determine and study the properties of a multidimensional PES, which is based on the features of the topology of the configuration space of linear polymers (and biopolymers), symmetry with respect to permutations of identical chain links, and Morse theory for studying the topography of multidimensional surfaces. Under certain conditions, this approach gives observable analytical results for the topography of the PES and the free energy surface (FES) of a macromolecule and makes it possible to relate the rather heterogeneous results of experiments on protein folding from a unified point of view. At the same time, a new formulation appears for a number of fundamental and controversial issues related to the physical laws of the formation of living systems. In particular, a connection is traced between the temperature regime on the planet and the chemical realization of the energy of nonvalent interactions in a macromolecule, which are necessary for the formation of unique spatial structures of biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. P. Nurse, Nature 597, 305 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. C. B. Anfinsen, Science 181 (4096), 223 (1973). https://doi.org/10.1016/S0021-9258(18)64176-6

    Article  CAS  PubMed  Google Scholar 

  3. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell Univ. Press, Ithaca, NY, 1960).

    Google Scholar 

  4. C. Levinthal, J. Chim. Phys. 65 (1), 44 (1968).

    Article  Google Scholar 

  5. K. A. Dill and J. L. MacCallum, Science 338, 1042 (2012). https://doi.org/10.1126/science.1219021

    Article  CAS  PubMed  Google Scholar 

  6. A. V. Finkelstein, N. S. Bogatyreva, D. N. Ivankov, and S. O. Garbuzynskiy, Biophys. Rev. 14, 1255 (2022). https://doi.org/10.1007/s12551-022-01000-1

    Article  CAS  PubMed  Google Scholar 

  7. W. A. Eaton, J. Phys. Chem. B 125, 3452 (2021). https://doi.org/10.1021/acs.jpcb.1c00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989).

    Article  CAS  Google Scholar 

  9. P. G. Wolynes, Proc. Natl. Acad. Sci. USA 93 (25), 14249 (1996). doi . 93.25.14249https://doi.org/10.1073/pnas

  10. J. N. Onuchic and P. G. Wolynes, Curr. Opin. Struct. Biol. 14 (1), 70 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. P. G. Wolynes, Proc. Natl. Acad. Sci. USA 92 (7), 2426 (1995). https://doi.org/10.1073/pnas.92.7.2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. I. Shakhnovich and A. M. Gutin, Stud. Biophys. (Berlin) 132, 47 (1989).

    CAS  Google Scholar 

  13. A. Sali, E. Shakhnovich, and M. Karplus, Nature 369 (6477), 248 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. W. M. Jacobs and E. I. Shakhnovich, J. Phys. Chem. B 122 (49), 11126. https://doi.org/10.1021/acs.jpcb.8b05842

  15. S. F. Chekmarev, S. V. Krivov, and M. Karplus, J. Phys. Chem. B 109 (11), 5312 (2005). https://doi.org/10.1021/jp047012h

    Article  CAS  PubMed  Google Scholar 

  16. S. F. Chekmarev, Phys. Rev. E 99, 022412 (2019). https://doi.org/10.1103/PhysRevE.99.022412

    Article  CAS  PubMed  Google Scholar 

  17. A. Y. Grosberg and A. R. Khokhlov, Giant Molecules: Here, There, and Everywhere, 2nd ed. (World Scientific Publ., Singapore, 2011).

    Google Scholar 

  18. I. M. Lifshits, A. Yu. Grosberg, and A. R. Khokhlov, Sov. Phys. Usp. 22, 123 (1979).

    Article  Google Scholar 

  19. A. R. Khokhlov and P. G. Khalatur, Phys. A 249 (1–4), 253 (1998). https://doi.org/10.1016/s0378-4371(97)00473-1

    Article  CAS  Google Scholar 

  20. P. S. Orekhov, M. E. Bozdaganyan, N. Voskoboynikova, et al., Nanomaterials 12 (3), 361 (2022). https://doi.org/10.3390/nano12030361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. Voskoboynikova, P. Orekhov, M. Bozdaganyan, et al., Int. J. Mol. Sci. 22 (5), 2548 (2021). https://doi.org/10.3390/ijms22052548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Methods of Computer Molecular Modeling for the Study of Polymers and Biopolymers, Ed. by V. A. Ivanov, A. L. Rabinovich, and A. R. Khokhlov (Knizhnyi dom Librokom, Moscow, 2009) [in Russian].

  23. K. V. Shaitan, E. V. Turlei, D. N. Golik, et al., Khim. Fiz. 25 (9), 31 (2006).

    CAS  Google Scholar 

  24. K. V. Shaitan, Russ. J. Phys. Chem. B 8(4), 524 (2014). https://doi.org/10.7868/S0207401X14070085

  25. V. I. Goldanskii and Y. F. Krupyanskii, Q. Rev. Biophys. 22 (1), 39 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Y. F. Krupyanskii, V. I. Goldanskii, F. Parak, R. L. Mossbauer, I. P. Suzdalev, H. Engelmann, Z. Naturforsch., C: Biosci. 37 (1–2), 57 (1982).

    Google Scholar 

  27. Yu. F. Krupyanskii, V. I. Goldanskii, G. U. Nienhaus, and F. Parak, Hyperfine Interact. 53 (1–4), 59 (1990).

    Article  CAS  Google Scholar 

  28. Y. F. Krupyanskii, K. V. Shaitan, V. I. Gol’danskii, I. V. Kurinov, A. B. Rubin, I. P. Suzdalev, Biophysics 32 (5), 820 (1987).

    Google Scholar 

  29. Yu. F. Krupyanskiǐ and V. I. Goldanskiǐ, Phys.-Usp. 45 (11), 1131 (2002).

    Google Scholar 

  30. R. L. Mossbauer, Hyperfine Interact. 33, 199 (1987). https://doi.org/10.1007/BF02394109

    Article  Google Scholar 

  31. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus, Biochemistry 14 (24), 5355 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. H. Frauenfelder, The Physics of Proteins, Ser. Biol. Med. Phys., Biomed. Eng., Ed. by S. S. Chan and W. S. Chan (Springer, New York, 2010). https://doi.org/10.1007/978-1-4419-1044-8_12

    Book  Google Scholar 

  33. A. A. Kononenko, P. P. Noks, S. K. Chamorovskii, A. B. Rubin, G. I. Likhtenshtein, Yu. F. Krupyanskii, I. P. Suzdalev, and V. I. Gol’danskii, Khim. Fiz. 5 (6), 795 (1986).

    CAS  Google Scholar 

  34. K. V. Shaitan and A. B. Rubin, Mol. Biol. 14, 1046 (1980).

    Google Scholar 

  35. K. V. Shaitan and A. B. Rubin, Biophysics 25, 809 (1980).

    Google Scholar 

  36. W. Ebeling, L. Schimansky-Gefer, and Y. M. Romanovsky, Stochastic Dynamics of Reacting Biomolecules (World Scientific Publ., Singapore, 2003). https://doi.org/10.1142/9789812795434_0010

    Book  Google Scholar 

  37. A. B. Rubin, K. V. Shaitan, A. A. Kononenko, and S. K. Chamorovsky, Photosynth. Res. 22, 219 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. K. V. Shaitan and A. B. Rubin, Mol. Biol. 17 (6), 1280 (1983).

    CAS  Google Scholar 

  39. K. V. Shaitan and I. V. Uporov, Khim. Fiz. 3 (10), 1416 (1984).

    CAS  Google Scholar 

  40. S. K. Basovets, I. V. Uporov, K. V. Shaitan, Y. F. Krupyanskii, I. V. Kurinov, I. P. Suzdalev, A. B. Rubin, and V. I. Goldanskii, Hyperfine Interact. 39 (4), 369 (1988). https://doi.org/10.1007/bf02397646

    Article  CAS  Google Scholar 

  41. K. V. Shaitan, M. G. Mikhailyuk, A. S. Plachinda, and V. I. Khromov, Russ. Chem. Bull. 51 (12), 2196 (2002).

    Article  CAS  Google Scholar 

  42. K. V. Shaitan and M. G. Mikhailyuk, Khim. Fiz. 20 (2), 3 (2001).

    CAS  Google Scholar 

  43. K. V. Shaitan, Biophysics 39 (6), 993 (1994).

    Google Scholar 

  44. A. Avetisov, A. H. Bikulov, and S. V. Kozyrev, J. Phys. A: Math. Gen. 32 (50), 8785 (1999). https://doi.org/10.1088/0305-4470/32/50/301

    Article  CAS  Google Scholar 

  45. D. Zabelskii, A. Alekseev, K. Kovalev, et al., Nat. Commun. 11, 5707 (2020). https://doi.org/10.1038/s41467-020-19457-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. A. Armeev, A. S. Kniazeva, G. A. Komarova, M. P. Kirpichnikov, A. K. Shaytan, Nat. Commun. 12, 2387 (2021). https://doi.org/10.1038/s41467-021-22636-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K. V. Shaitan, Biophysics 63 (1), 1 (2018). https://doi.org/10.1134/S0006350918010165

    Article  CAS  Google Scholar 

  48. K. V. Shaitan, Biophysics 63 (4), 485 (2018). https://doi.org/10.1134/S0006350918040152

    Article  CAS  Google Scholar 

  49. K. V. Shaitan, Biophysics 63 (5), 675 (2018). https://doi.org/10.1134/S0006350918050214

    Article  CAS  Google Scholar 

  50. K. V. Shaitan, Biophysics 63 (6), 847 (2018). https://doi.org/10.1134/S0006350918060246

    Article  CAS  Google Scholar 

  51. K. V. Shaitan, Biophysics 67 (3), 386 (2022). https://doi.org/10.1134/S0006350922030204

  52. V. I. Gol’danskii and V. V. Kuz’min, Sov. Phys. Usp. 32, 1 (1989). https://doi.org/10.1070/PU1989v032n01ABEH002674

    Article  Google Scholar 

  53. V. A. Avetisov and V. I. Gol’danskii, Phys. Usp. 39, 819 (1996). https://doi.org/10.1070/PU1996v039n08ABEH000164

    Article  Google Scholar 

  54. Academician Vitalii Iosifovich Gol’danskii. Selected Articles and Memoirs, Ed. by A. A. Berlin (Nauka, Moscow, 2009). http://elib.biblioatom.ru/text/akademik-goldanskiy_2007/go,0/.

    Google Scholar 

  55. D. T. Edwards, M.-A. LeBlanc, and T. T. Perkins, PNAS 118 (12), e2015728118 (2021). https://doi.org/10.1073/pnas.2015728118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Borgia, P. M. Williams, and J. Clarke, Annu. Rev. Biochem. 77 (1), 101 (2008). https://doi.org/10.1146/annurev.biochem.77.060706.093102

    Article  CAS  PubMed  Google Scholar 

  57. G. Kramer, D. Boehringer, N. Ban, and B. Bukau, Nat. Struct. Mol. Biol. 16 (6), 589 (2009). https://doi.org/10.1038/nsmb.1614

    Article  CAS  PubMed  Google Scholar 

  58. J. D. Bernal, The Origin of Life (Weidenfeld and Nicholson, London, 1967).

    Google Scholar 

  59. E. V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution (FT Press, New Jersey, 2011).

    Google Scholar 

  60. F. H. Stillinger, Energy Landscapes, Inherent Structures, and Condensed-Matter Phenomena (Princeton Univ. Press, Princeton, 2016).

    Book  Google Scholar 

  61. D. J. Wales, Energy Landscapes (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  62. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, Cambridge, 2002).

    Google Scholar 

  63. S. Piana, J. L. Klepeis, and D. E. Shaw, Curr. Opin. Struct. Biol. 24, 98 (2014). https://doi.org/10.1016/j.sbi.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  64. Elliott, J. and Dawber, P., Symmetry in Physics (Macmillan, London, 1981).

    Google Scholar 

  65. I. Macdonald, Symmetric Functions and Hall Polynomials (Oxford Univ. Press, New York, 1979).

    Google Scholar 

  66. A. T. Fomenko, Differential Geometry and Topology. Additional Chapters, 2nd ed. (Izhevsk. Resp. Tipogr., Izhevsk, 1999).

    Google Scholar 

  67. V. A. Zorich, Theory Probab. Its Appl. 62 (2), 236 (2018). https://doi.org/10.1137/S0040585X97T988587

    Article  Google Scholar 

  68. J. Milnor, Morse Theory (Princeton Univ. Press, Princeton, 1963).

    Book  Google Scholar 

  69. S. J. Hagen, Curr. Protein Pept. Sci. 11, 385 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. H. A. Kramers, Physica (Utrecht), 7, 284 (1940).

    Article  CAS  Google Scholar 

  71. R. Zwanzig, J. Chem. Phys. 97, 3587 (1992). https://doi.org/10.1063/1.462993

    Article  CAS  Google Scholar 

  72. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1988) [in Russian].

  73. K. V. Shaitan and S. S. Saraikin, Biophysics 45 (3), 407 (2000).

    CAS  Google Scholar 

  74. K. V. Shaitan, F. Yu. Popelenskii, and G. A. Armeev, Biophysics 62 (3), 348 (2017). https://doi.org/10.1134/S0006350917030186

    Article  CAS  Google Scholar 

  75. A. A. Erendzhenova, G. A. Armeev, and K. V. Shaitan, Biophysics 65 (5), 731 (2020). https://doi.org/10.31857/S0006302920050026

    Article  Google Scholar 

  76. K. V. Shaitan and I. V. Fedik, Biophysics 60 (3), 335 (2015). https://doi.org/10.1134/S0006350915030161

    Article  CAS  Google Scholar 

  77. K. V. Shaitan, M. A. Lozhnikov, and G. M. Kobel’kov, Biophysics 61 (4), 531 (2016). https://doi.org/10.1134/S0006350916040205

    Article  CAS  Google Scholar 

  78. K. V. Shaitan, M. A. Lozhnikov, and G. M. Kobel’kov, Biophysics 62 (2), 182 (2017). https://doi.org/10.1134/S0006350917020233

    Article  CAS  Google Scholar 

  79. M. V. Vol’kenshtein, Configuration Statistics of Polymer Chains (Izd. Akad. Nauk SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  80. A. V. Finkel’shtein and O. V. Ptitsyn, Protein Physics (Knizhnyi Dom Univ., Moscow, 2012) [in Russian]. https://doi.org/10.13140/RG.2.1.1319.8320

    Google Scholar 

  81. J. W. Gibbs, Elementary Principles in Statistical Mechanics (Charles Scribner’s Sons, New York, 1902).

    Google Scholar 

  82. A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 1965), Vol. 2.

    Google Scholar 

  83. B. A. Rozenfel’d, Multidimensional Spaces, 2nd ed. (Lenand, Moscow, 2021) [in Russian].

    Google Scholar 

  84. J. Kubelka, J. Hofrichter, and W. A. Eaton, Curr. Opin. Struct. Biol. 14 (1), 76 (2004). https://doi.org/10.1016/j.sbi.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  85. K. Roder and D. J. Wales, Front. Mol. Biosci. 9, 820792 (2022). https://doi.org/10.3389/fmolb.2022.820792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. H. Lee and W. Cai, Ewald Summation for Coulomb Interactions in a Periodic Supercell (Stanford Univ., Stanford, 2009). http://micro.stanford.edu/mediawiki/images/4/46/Ewald_notes.pdf.

    Google Scholar 

  87. C. Heer, Statistical Mechanics, Kinetic Theory, and Stochastic Processes (Elsevier, Amsterdam, 1972).

    Google Scholar 

  88. A. S. Lemak and N. K. Balabaev, Mol. Simul. 15, 223 (1995).

    Article  CAS  Google Scholar 

  89. K. V. Shaitan and S. S. Saraikin, J. Phys. Chem. A 76 (6), 987 (2002). https://www.elibrary.ru/download/elibrary_44545193_ 46227090.pdf.

  90. V. L. Golo and K. V. Shaitan, Biophysics 47 (4), 611 (2002).

    CAS  Google Scholar 

  91. V. L. Golo, Vl. N. Salnikov, and K. V. Shaitan, Phys. Rev. E 70, 046130 (2004).https://doi.org/10.1103/PhysRevE.70.046130

    Article  CAS  Google Scholar 

  92. M. Yolamanova, C. Meier, A. K. Shaytan, et al., Nat. Nanotechnol. 8 (2), 130 (2013). https://doi.org/10.1038/nnano.2012.248

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks his colleagues at the Faculty of Mechanics and Mathematics of Moscow State University who, through, informal communication, supported his desire to continue work in the chosen direction. The author thanks M.P. Kirpichnikov for his support and attention to the work.

The support from the Interdisciplinary Scientific and Educational Schools of Moscow University “Molecular Technologies of Living Systems and Synthetic Biology” and “Brain, Cognitive Systems, and Artificial Intelligence” stimulated us to pay more attention to fundamental research.

Funding

This study could not have been undertaken without the financial support over a number of years by the Russian Foundation for Basic Research, the Russian Science Foundation, and (recently) the Russian Ministry of Science and Higher Education (grant no. 075-15-2021-1354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shaitan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaitan, K.V. Why Do Proteins Fold into Unique 3D Structures? And Other Questions.... Russ. J. Phys. Chem. B 17, 550–570 (2023). https://doi.org/10.1134/S1990793123030259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030259

Keywords:

Navigation