Skip to main content
Log in

Modeling and Simulation of a Microwave-Assisted Plasma with Different Input Power for Plasma-Based Applications

  • ELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Plasma technology is used in various fields such as ozone generation, surface treatment, medicine and so on. Wave generated plasmas such as microwave plasma, is a promising technology for its interesting and versatile features. These features of microwave plasma are an alternative technology compared to traditional thermal chemical reactors provided certain technical challenges are overcome. In this numerical study, the properties of microwave-powered plasma operated at frequency of 2.45 GHz and in argon gas at atmospheric pressure were investigated. By varying the input power of the device in transvers magnetic (TM) mode, the comparative profiles of the electron density, the electron temperature, the electric field and the power deposition are demonstrated. Simulation results show chemical generation in microwave plasma. High energy electrons and electron density have been considered to be the main factors affecting microwave plasma properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. K. Sergeichev, N. Lukina, L. Apasheva, E. Ovcharenko, and A. Lobanov, Russ. J. Phys. Chem. B 16, 84 (2022). https://doi.org/10.1134/S1990793122010134

    Article  CAS  Google Scholar 

  2. V. Shumova, D. Polyakov, and L. Vasilyak, Russ. J. Phys. Chem. B 16, 912 (2022). https://doi.org/10.1134/S1990793122050232

    Article  CAS  Google Scholar 

  3. V. Y. Levashov, P. Kozlov, N. Bykova, and I. Zabelinskii, Russ. J. Phys. Chem. B 15, 56 (2021). https://doi.org/10.1134/S1990793121010097

    Article  CAS  Google Scholar 

  4. V. Shumova, D. Polyakov, and L. Vasilyak, Russ. J. Phys. Chem. B 14, 666 (2020). https://doi.org/10.1134/S1990793120040223

    Article  CAS  Google Scholar 

  5. I. Kalinina, O. Karpukhina, V. Ryabyi, et al., Russ. J. Phys. Chem. B 14, 1018 (2020). https://doi.org/10.1134/S1990793120060202

    Article  CAS  Google Scholar 

  6. M. S. Kim, H. Y. Kim, H. K. Shin, et al., Jpn. J. Appl. Phys. 53, 05FR02 (2014).

    Article  Google Scholar 

  7. H. Nowakowska, D. Czylkowski, B. Hrycak, and M. Jasiński, Plasma Sources Sci. Technol. 27, 085008 (2018).

    Article  Google Scholar 

  8. L. Gan, J. Jiang, J. W. Duan, et al., J. Biophotonics 14, e202000415 (2021).

    Article  PubMed  Google Scholar 

  9. J. F. de la Fuente, A. A. Kiss, M. T. Radoiu, and G. D. Stefanidis, J. Chem. Technol. Biotechnol. 92, 2495 (2017).

    Article  CAS  Google Scholar 

  10. Y. Seo, H. W. Lee, H. Kwon, et al., Thin Solid Films 519, 7071 (2011).

    Article  CAS  Google Scholar 

  11. R. Bussiahn, R. Gesche, S. Kühn, and K. Weltmann, Plasma Sources Sci. Technol. 21, 065011 (2012).

    Article  CAS  Google Scholar 

  12. Y. H. Na, G. Park, E. H. Choi, and H. S. Uhm, Thin Solid Films 547, 125 (2013).

    Article  CAS  Google Scholar 

  13. H. S. Uhm and Y. C. Hong, Thin Solid Films 519, 6974 (2011).

    Article  CAS  Google Scholar 

  14. S. Ono, S. Teii, Y. Suzuki, and T. Suganuma, Thin Solid Films 518, 981 (2009).

    Article  CAS  Google Scholar 

  15. J. Muñoz, J. Bravo, and M. Calzada, Appl. Surf. Sci. 407, 72 (2017).

    Article  Google Scholar 

  16. R. Kovacs, N. Bibinov, P. Awakowicz, H. E. Porteanu, S. Kühn, and R. Gesche, Plasma Process Polym. 6, S233 (2009).

    Article  CAS  Google Scholar 

  17. J. Hnilica, V. Kudrle, and L. Potocnakova, IEEE Trans Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 40, 2925 (2012).

    Article  CAS  Google Scholar 

  18. T. Belmonte, T. Gries, R. Cardoso, et al., Plasma Sources Sci. Technol. 20, 024004 (2011).

    Article  Google Scholar 

  19. J. Hnilica, J. Schäfer, R. Foest, L. Zajíčková, and V. Kudrle, J. Phys. D 46, 335202 (2013).

    Article  Google Scholar 

  20. T. Matsubayashi, H. Hidaka, and H. Muguruma, Jpn. J. Appl. Phys. 55, 076201 (2016).

    Article  Google Scholar 

  21. A. Kilicaslan, O. Levasseur, V. Roy-Garofano, et al., J. Appl. Phys. 115, 113301 (2014).

    Article  Google Scholar 

  22. F. Sohbatzadeh and H. Soltani, J. Appl. Phys. 12, 53 (2018).

    Google Scholar 

  23. A. Barjasteh and E. Eslami, Plasma Chem. Plasma Process. 38, 261 (2018).

    Article  CAS  Google Scholar 

  24. E. Poorreza and N. Dadashzadeh, Russ. J. Phys. Chem. B 17 (3) (2023).

  25. V. A. Godyak and V. I. Kolobov, Phys. Rev. Lett. 81, 369 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Poorreza.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorreza, E., Dadashzadeh Gargari, N. Modeling and Simulation of a Microwave-Assisted Plasma with Different Input Power for Plasma-Based Applications. Russ. J. Phys. Chem. B 17, 719–724 (2023). https://doi.org/10.1134/S1990793123030235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030235

Keywords:

Navigation